WebGL Seminar @ TUT http://lively.cs.tut.fi/seminars/WebGL2011

Prof. Tommi Mikkonen (Tampere University of Technology, Finland) Dr. Antero Taivalsaari (Nokia Research Center & TUT)

Background

- History of computing and software development is full of disruptive periods and paradigm shifts.
- The computing industry goes through major changes every 10-15 years.
- Examples of disruptive eras:
 - Minicomputers in 1970s
 - Personal computers in the 1980s
 - Web 1.0 in the 1990s
 - Mobile software in the 2000s
 - Cloud computing in the 2010s

Disruptive Trend Today: Web-Based Software

- The widespread adoption of the World Wide Web is reshaping our world in various ways.
- Documents, photos, music, videos, news and various other artifacts and services have already started migrating to the Web.
- Many industries (e.g., publishing and entertainment) are currently undergoing dramatic transformations.
- The software industry is currently experiencing a similar transformation, or a paradigm shift.

Web Applications – Implications

- Web-based software will dramatically change the way people develop, deploy and use software.
- No more installations!
 - Applications will simply run off the Web.
- No more upgrades!
 - > Always run the latest application version.
- Instant worldwide deployment!
 - > Whatever we release here in Tampere is instantly visible in Tammisaari, Tampa Bay, Tandragee, Tasmania or Tanzania.
 - > No middlemen or distributors needed.
- No CPU dependencies, OS dependencies, ...
 - > The Web is the Platform.

Unfortunately...

- The web browser was not designed for running real applications.
 - It was designed in the early 1990s for viewing documents, forms and other page-structured artifacts – not applications.
 - Programming capabilities on the web were an afterthought, not something inherent in the design of the browser.
- Until recently, the capabilities of the web browser to execute and display truly interactive applications and content has been limited.
 - Various additional components or plugins (Flash, Shockwave, Quicktime, Silverlight, ...) have been necessary to add more interactive types of content to the browser.

Evolution of the Web

2) Animated pages with plug-ins (e.g., http://www.cadillac.com)

3) Rich Internet Applications (e.g., docs.google.com)

What's Next?

Web Development vs. Software Engineering Impedance Mismatch

Web Development	Conventional SW Development
- Documents	- Applications
- Page / form oriented interaction	- Direct manipulation
- Managed graphics, static layout	- Directly drawn, dynamic graphics
- Instant worldwide deployment	- Conventional installation
 Source code and text favored 	- Binary representations favored
 Development based mostly on conventions and "folklore" 	- Development based on established engineering principles
- Informal development practices	- More formal development
 Target environment not designed for applications 	- Target environment specifically intended for applications
- Tool-driven development approach	- A wide variety of development approaches available

The Evolving Web Browser

- There are numerous ongoing web standards activities.
 - In fact, it is often difficult to identify the really important activities from all the noise – "alphabet soup" problem.
- There are two very important standards that will significantly enhance the capabilities of the Web:
 - > HTML5 (http://www.w3.org/TR/html5)
 - > WebGL (http://www.khronos.org/webgl)
- HTML5 will enable desktop-style web applications that can be used in offline mode in addition to normal webbased operation.
- WebGL will add the ability to display 3D graphics directly in the web browser without any plug-in components.

HTML5: Main New Features

- <canvas> element for immediate mode 2D drawing
- Timed media playback (<video> and <audio> tags)
- Offline storage database (offline web applications)
- Interactive document editing
- Drag-and-drop support
- Cross-document messaging
- Browser history management
- MIME type and protocol handler registration
- Microdata (HTML annotations)
- For details see, e.g.: http://diveintohtml5.org/

WebGL

Introduction to WebGL

- WebGL is a cross-platform web standard for hardware accelerated 3D graphics API.
 - Developed by Mozilla, Khronos Group, and a consortium of other companies including Apple, Google and Opera.
- The main feature that WebGL brings to the Web is the ability to display 3D graphics natively in the web browser.
- WebGL support is already available in recent versions of the popular web browsers.
 - > Firefox (4B1 and later), Chrome (7 and later), Safari (nightly builds)
 - Not yet available in Internet Explorer (not even in IE9)
 - > See http://www.khronos.org/webgl/wiki/Getting_a_WebGL_Implementation

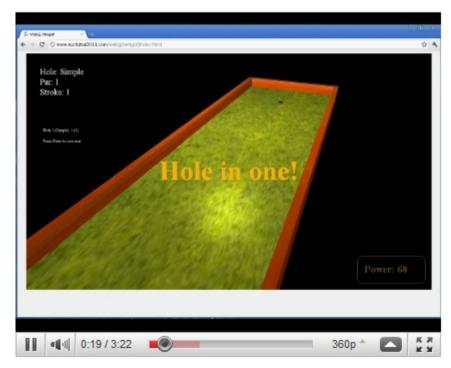
WebGL from Programmer's Viewpoint

- WebGL is based on OpenGL ES 2.0, and it uses the OpenGL shading language GLSL.
 - http://www.khronos.org/opengles
 - http://www.opengl.org/documentation/glsl
- WebGL runs in the HTML5's <canvas> element.
- WebGL data is generally accessible through the web browser's Document Object Model (DOM) interface.
- A comprehensive JavaScript API is provided to open up OpenGL programming capabilities to JavaScript programmers.
 - If you are familiar with OpenGL (and JavaScript), it should be easy to get started.

Why is WebGL Relevant?

- Chances are, today you are already spending 60-90% of your time on a computer using the web browser.
 - but not if you like to play high-end games!
- So far, it has been very difficult to convince game developers to take web-based software seriously.
 - > too slow, poor graphics support, poor developer experience, ...
- WebGL will effectively eliminate the "last safe bastion" of conventional binary applications.
- WebGL will make it possible to run not only interactive 3D applications but 2D applications as well.
 - > So far, it has been difficult to write procedural (as opposed to declarative) 2D software that runs in a standard web browser.

Lively Kernel (http://lively-kernel.org/) Example of a Highly Interactive 2D Desktop Environment



Lively 3D – WebGL Research @ TUT

- Lively 3D is a research project at TUT that investigates the use of WebGL in building a highly interactive web-based application development environment.
 - http://lively.cs.tut.fi/
 - http://livelygoes3d.blogspot.com/

WebGL Libraries

- Various WebGL libraries are available to raise the level of abstraction and improve programmer productivity:
 - C3DL (http://www.c3dl.org/)
 - Copperlicht (http://www.ambiera.com/copperlicht/)
 - CubicVR (http://www.cubicvr.org/)
 - > EnergizeGL (http://energize.cc/)
 - > GLGE (http://www.glge.org/)
 - > O3D (http://code.google.com/p/o3d/)
 - > SceneJS (http://scenejs.org/)
 - > SpiderGL (http://spidergl.org/)
 - > WebGLU (http://github.com/OneGeek/WebGLU)
 - > X3DOM (http://www.x3dom.org/)

WebGL Examples

- Miscellaneous links from the Web:
 - http://planet-webgl.org/
 - http://learningwebgl.com/blog/
 - http://learnwebgl.appspot.com/
 - http://learnwebgl.blogspot.com/
 - http://www.ibiblio.org/e-notes/webgl/webgl.htm
 - http://www.dankantor.com/html5/html5-webgl.php
 - http://twitter.com/mrdoob/status/10408503797620736
 - http://code.google.com/p/quake2-gwt-port/
 - > http://code.google.com/p/webhierarkia/wiki/WebGL
 - https://developer.mozilla.org/en/WebGL/Animating_objects_with_WebGL

About the Seminar: Practical Arrangements

Why This Seminar?

- HTML5 and WebGL will dramatically change people's perception about the web browser as an application environment.
- In this seminar we will:
 - Study WebGL and the various libraries and tools in this area.
 - > Build applications using those technologies.
 - Drill deeper into those technologies that seem most likely to succeed.
 - More broadly: Raise the awareness of the importance of WebGL and web browser as an application platform.

Practical Arrangements

- The seminar will be held on Fridays, 12:15 13:45 in Tietotalo TC103.
- Next seminar session on Friday, December 17: WebGL Technical Overview by Matti Anttonen and Arto Salminen.
- Weekly student presentations will begin on January 7, 2011.
 - Detailed schedule to be announced.

How to Get Credits?

- Maximum number of credits: 3-5 op
- Attendance: 1 op
- Seminar presentation (30-45 min) on selected WebGL library/technology: 2 op
- Successfully written, new demo application and/or written report on selected technology: additional 2 op

Choosing Presentation Topics

- Please choose your presentation topic and the preferred presentation date as soon as possible.
- Send e-mail to: tommi.mikkonen[at]tut.fi
- Topics allocated on a "first-come-first-serve" basis.
- First available presentation slot(s): January 7, 2011.
- Seminar web site page will be updated regularly to list the chosen presentation topics:
 - http://lively.cs.tut.fi/seminars/WebGL2011/
- Presentations can be held in Finnish or English.
 - > English preferred if there are non-Finnish-speaking participants.

Proposed Outline for Presentations

- Introduction
 - high-level overview, purpose of the technology, background/history
- Technical overview of the technology
- Small examples
- Walkthrough of a more comprehensive example illustrating the use of the technology
- Evaluation
 - > benefits, drawbacks, general usefulness, possible measurements
- Summary
- Presentation length: 30-45 min (incl. 10-15 min for questions)

Available Presentation Topics

- > C3DL (http://www.c3dl.org/)
- Copperlicht (http://www.ambiera.com/copperlicht/)
- CubicVR (http://www.cubicvr.org/)
- EnergizeGL (http://energize.cc/)
- SLGE (http://www.glge.org/)
- > O3D (http://code.google.com/p/o3d/)
- > Processing.js (http://processingjs.org/)
- > SceneJS (http://scenejs.org/)
- > SpiderGL (http://spidergl.org/)
- > WebGLU (http://github.com/OneGeek/WebGLU)
- > X3DOM (http://www.x3dom.org/)
- WebGL in QtWebKit (http://qt.nokia.com/products/library/qtwebkit)

Action Items for Next Week (Dec 17)

- 1. Choose your preferred presentation topic.
- 2. Come up with a great idea for a possible demo application that you would like to write.

Thank You! Questions?

http://lively.cs.tut.fi/seminars/WebGL2011

