
Lively for Qt: A Platform for Mobile Web Applications
Tommi Mikkonen

Tampere University of Technology
Korkeakoulunkatu 1

FI-33720 Tampere, FINLAND

tommi.mikkonen@tut.fi

Antero Taivalsaari
Sun Microsystems Laboratories

P.O. Box 553 (TUT)
FI-33101 Tampere, FINLAND

antero.taivalsaari@sun.com

Mikko Terho
Nokia Devices

Visiokatu 3
FI-33720 Tampere, FINLAND

mikko.j.terho@nokia.com

ABSTRACT
The  convergence  of  desktop,  mobile  and  web  application 
development has resulted in new types of software systems. These 
new systems are built to leverage the World Wide Web, and they 
allow  the  use  of  dynamically  downloaded  applications  and 
services from any type of terminal, including desktop computers 
and mobile devices. At the same time, the JavaScript language has 
become the  de facto programming language of the Web. In this 
paper  we  introduce  Lively  for  Qt –  a  practical  JavaScript 
application  platform  that  supports  the  development  of  highly 
interactive mobile web applications and mashups that run both in 
the  web  browser  and  as  standalone  “phonetop”  applications. 
Additionally, we present our vision for mobile web applications, 
as well as summarize the experiences and lessons learned during 
the development of the new system.

Categories and Subject Descriptors
D.2.2 [Software Engineering]:  Design Tools and Techniques – 
modules and interfaces, software libraries, user interfaces. D.2.6 
[Software  Engineering]:  Programming  Environments  – 
graphical  environments,  integrated  environments,  interactive  
environments. 

General Terms
Design, Experimentation, Languages.

Keywords
Web applications, mobile software, Lively for Qt.

1.INTRODUCTION
The  convergence  of  desktop,  mobile  and  web  application 
development has resulted in new types of software systems and 
runtime environments. These new systems are built to leverage the 
World Wide Web, and they allow applications and other content 
to  be  downloaded  dynamically  from  the  Web.  Applications 
commonly run in the web browser and do not necessarily require 
any explicit installation.  Furthermore, these new systems enable 
the  use of applications and services from any type of terminal, 
including  desktop  computers  and  mobile  devices.  Despite  the 
problems that arise from CPU speed differences, memory capacity 
differences,  network  bandwidth  limitations  and  screen  size 

variations, it is safe to assume that it will eventually be possible to 
use the same web applications and services in desktop computers 
and mobile devices.

Given that JavaScript programming language support is included 
in  every  commercial  web  browser,  JavaScript  [5]  has  rapidly 
become the de facto programming language of the Web. Although 
JavaScript  was originally  designed  as  a  scripting  language  –  a 
language targeted to relatively simple scripting tasks – its use has 
rapidly  spread to  “real”  programming tasks,  serious  application 
development and even systems programming. These days, it is not 
uncommon to see JavaScript applications that consist of tens of 
thousands of lines of code.

This paper introduces  Lively for Qt (http://lively.cs.tut.fi/qt)  – a 
practical  JavaScript  application  platform  that  supports  the 
development  of  compelling,  highly  interactive  mobile  web 
applications and mashups that run both in the web browser and as 
standalone “phonetop” applications. The system runs on top of Qt 
(http://www.qtsoftware.com/)  –  a  cross-platform  application 
framework that was recently acquired by Nokia. Versions of the 
Qt  framework have already been announced  for Nokia's device 
platforms.

In addition, we present our vision for mobile web applications, as 
well  as  briefly  summarize  the  experiences  and  lessons  learned 
during the development  of the Lively for Qt system. The work 
builds upon our earlier experiences in developing the  Sun Labs  
Lively Kernel  (http://research.sun.com/projects/lively) [7, 13] – a 
“zero-installation”  web  application  platform  that  runs  in  the 
standard  web  browser  without  any  installation  or  plug-in 
components.  The key idea in creating the Lively Kernel was to 
implement  a  highly  interactive  application  development 
environment, which – from the end user's viewpoint  – is just a 
web  page.  Our  earlier  efforts  on  porting  the  Lively  Kernel  to 
mobile devices have been presented in [9].

The Lively for Qt system introduced in this paper is the logical 
successor of the Sun Labs Lively Kernel in that it implements a 
JavaScript application environment that is capable of hosting Rich 
Internet Applications that are fully interactive and malleable;  in 
short, lively. However, a key difference between the two systems 
is that in Lively for Qt we leverage an existing, rich, mature, well-
documented application framework as the basis of the system. In 
the  Lively  Kernel,  the  development  APIs  offered  by  the 
underlying  platform (the  web  browser)  were  far  more  limited. 
Another  important  difference  is  the  increased  focus  on  mobile 
devices. Although the Lively for Qt system can run on a wide 
variety  of  target  platforms,  including  conventional  desktop 
computers, our goal is  to build  a practical web application and 
mashup environment specifically for mobile devices.

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise,  or  republish,  to  post  on  servers  or  to  redistribute  to  lists, 
requires prior specific permission and/or a fee.
Mobility 2009, Sep 2-4, Nice, France Copyright © 2009 
ACM 978-1-60558-536-9/00/0009……$5.00



The structure of this paper is as follows. Section 2 introduces our 
vision for mobile web applications, and provides background and 
general motivation for the rest of the paper. Section 3 provides an 
overview of the Qt application framework, and then introduces the 
Lively  for  Qt  system.  Section  4  introduces  some  sample 
applications and discusses the development style associated with 
them. Sections 5 and 6 discuss related work and revisit the vision 
presented in Section 2 in order to summarize the experiences and 
lessons  learned  in  the  scope  of  the  vision.  Finally,  Section  7 
concludes the paper.

2.A PLATFORM FOR MOBILE WEB 
APPLICATIONS: THE VISION
The  authors  of  this  paper  have  considerable  experience  in 
designing and building practical application platforms for mobile 
devices. The first author was closely involved in the introduction 
of the Symbian platform for Nokia devices.  The second author 
was the original  designer  behind  the  Java ME platform [12]  at 
Sun  Microsystems.  The  third  author  was  the  co-lead  of  the 
original Nokia Communicator project – the very first smartphone 
in the world.

We believe that next-generation mobile application platforms will 
be built to leverage the Web from the very beginning. Unlike the 
earlier mobile application platforms, in which applications were 
delivered mainly in binary (native) form, in the future applications 
will  be  downloaded  dynamically  and  used  without  explicit 
installation.  Applications  can  be  deployed  instantly  worldwide. 
Ideally, applications should simply run in the web browser, or a 
similar web client environment that has been specifically tailored 
for mobile devices;  the applications  should  be fully compatible 
with  full-fledged  web  applications  running  in  desktop  web 
browsers.

Unfortunately,  there  are  still  major  obstacles  in  creating  a 
platform that realizes the “One Web” objective advocated by the 
World Wide Web Consortium [10]. Even though it is fairly safe to 
assume that  eventually  the  same web applications  and  services 
will  run  in  desktop  computers  and  most  other  types  of  client 
devices,  it  is  not  yet  feasible  to  run  complex web applications 
(e.g.,  complex Ajax applications)  inside mobile devices using a 
web browser. For instance, as we reported earlier [9], running a 
moderately sized JavaScript application inside the web browser of 
a mobile device turned out to be impractical due to performance 
reasons;  a  moderately sized  application  took  over  a  minute  to 
load, and event handling in interactive applications often took a 
few seconds per each pointer or key event. Therefore, there is still 
a  need  for  a  more  intimate  coupling  between  the  native 
capabilities  of  the  mobile  device  and  the  web  application 
platform.

We believe that in the next two to five years, the winning recipe 
for a commercially successful mobile web application platform is 
the following:

1. Take a rich graphics framework that supports  a rich suite of 
widgets  and  provides  programmatical  support  for  direct, 
interactive manipulation and flexible graphical transformations 
such  as  scaling,  rotation,  and  so  on.  Ideally,  3D  graphics 
should be supported as well.

2. Take  JavaScript,  the  world's  most  widely  used  dynamic 
language,  and make the graphics  APIs available  to  it;  use a 
modern, high-performance JavaScript virtual machine, so that 
there will be enough power for serious applications.

3. Make  it  easy  to  access  the  Web  from  the  platform  using 
asynchronous  HTTP  networking  and  other  commonly  used 
networking standards; provide JavaScript APIs for processing 
XML,  JSON (JavaScript  Object  Notation),  DOM and  other 
frequently used formats and structures easily.

4. Add support for mobile-specific JavaScript APIs for areas such 
as wireless messaging, location, Bluetooth and camera support. 
Such  APIs  are  familiar,  e.g.,  from the  Java  ME™  Mobile 
Service Architecture (MSA) Specification [8].

5. Make the platform available both inside the web browser and 
natively. All the applications should be able to run both inside 
the web browser and as “phonetop” applications that behave 
like native applications.

6. Add a fine-grained security model so that network-downloaded 
applications can be executed safely; provide minimal access to 
APIs  for  those  applications  that  are  downloaded  from 
untrusted  sources,  and  more  extensive  access  to  APIs  for 
applications from trusted sources.

Although  our  vision  above  revolves  heavily  around  web 
technologies,  we believe that the development style used in the 
new platform  should  not  be  based  purely  on  declarative  web 
technologies such as HTML or CSS. Rather, there is a need for 
procedural  development  style  and  programmatic APIs as well. 
Currently, the JavaScript APIs offered by the web browser are still 
extremely limited compared to APIs offered by mature software 
platforms such as Microsoft Windows or MacOS X. The APIs are 
also  very  limited  compared  with  the  APIs  of  mature  mobile 
software  platforms  such  as  the  Symbian  OS  or  the  Java  ME 
platform.  The  need  for  rich,  mature,  well-documented  APIs 
supporting  a  procedural  programming  style  is  largely  why we 
have chosen the Qt framework as a starting point for the Lively 
for Qt system introduced in the next section.

3.LIVELY FOR QT
In  this  section  we present  the  Lively  for  Qt system that  is  the 
current manifestation of our vision described above. We start with 
an introduction of the Qt framework, and then introduce the key 
components and features of Lively for Qt. In later sections of the 
paper, we assess the Lively for Qt system in light of the vision 
presented above, as well as compare the system with competing 
platforms in this area.

3.1. Introduction to Qt
Qt (http://www.qtsoftware.com/)  is  a  mature,  well-documented 
cross-platform  application  framework  that  has  been  under 
development since the early 1990s. Qt supports a rich set of APIs, 
widgets  and  tools  that  run  on  most  commercial  software 
platforms, including Mac OS X, Linux and Windows. Examples 
of desktop applications built  with Qt include Adobe Photoshop 
Elements,  Google  Earth,  Skype  and  the  KDE  desktop 
environment for the Linux operating system. In addition, Qt has 
been  used  in  various  embedded  devices  and  applications, 



including  mobile  phones,  PDAs,  GPS  receivers  and  handheld 
media players.

General  features  of  the  Qt  framework.  From  the  technical 
viewpoint, Qt is primarily a GUI framework that includes a rich 
set  of  widgets,  graphics  rendering  APIs,  layout  and  stylesheet 
mechanisms and  associated  tools  that  can  be  used  for  creating 
compelling  user  interfaces  that  run  in  a  wide  array  of  target 
platforms.  Widgets  range  from  simple  objects  such  as  push 
buttons  and  labels  to  advanced  widgets  such  as  complete  text 
editors, calendars, and objects that host a complete web browser. 
Dozens and dozens of widget types are supported.

The GUI features of Qt adapt to the native look-and-feel of the 
target platform. For instance, on Mac OS X, all the widgets look 
like  native  Macintosh  widgets,  while  on  Windows applications 
utilizing  the  same  widgets  will  look  like  native  Windows 
applications.  An essential  part  in  enabling  cross-platform GUI 
behavior is flexible support for widget positioning using layouts. 
Qt's  layout  components  can adapt  to  different  sizes,  styles  and 
fonts used by the host operating system. In general, layouts give 
significant  advantage  when  the  program is  translated  to  other 
platforms  and  languages.  The  program adapts  automatically  to 
changed text sizes and resizes widgets in an aesthetically pleasant 
way. Additionally, since Qt supports full  internationalization, all 
the  locale-specific  components  (such  as  a  calendar  widget) 
automatically adapt to the current regional settings of the target 
platform.

In addition to its GUI capabilities, Qt offers APIs for networking, 
file  access,  database access,  text  processing,  XML parsing and 
many other useful tasks. A multimedia framework called Phonon 
is included to support audio and video playback. Qt networking 
libraries provide support for asynchronous HTTP communication 
familiar from Ajax [2].

Qt  and web  development.  What  makes  Qt  relevant  from the 
viewpoint  of  web  development  is  that  Qt  libraries  include  a 
complete web browser based on the WebKit (http://webkit.org/) 
browser  engine.  The  necessary DOM and  XML APIs  are  also 
included  to  parse,  manipulate  and  generate  new  web  content 
easily. In addition, Qt includes a fully functional ECMAScript [4] 
(JavaScript) engine called QtScript. The presence of a JavaScript 
engine is important, since JavaScript – along with XML – is the 
lingua  franca of the  Web that  is  used by popular  web service 
APIs such as the Google Maps API [6].

The web browser integration in Qt works in a number of different 
ways. For instance, it is possible to instantiate any number of web 
browsers inside a Qt application using the  QWebView API. The 
QWebView class provides a widget that can be used to view and 
edit  web  documents  inside  applications.  The  data  in  web 
documents can be manipulated using the built-in DOM and XML 
APIs.  To support  Qt applications that  run in  a web browser,  a 
plugin  called  QtBrowserPlugin exists  for  embedding  the  Qt 
environment into any commercial  web browser such as Mozilla 
Firefox or Apple Safari. The plugin makes it possible to run Qt 
applications  inside  a  web  browser,  either  as  standalone  Rich 
Internet Applications or alongside (or embedded in) conventional 
DHTML and Ajax web content.

Qt and mobile devices.  Trolltech,  the company developing Qt, 
was acquired by Nokia in 2008. Nokia is currently in the process 

of making Qt libraries available on their phone platforms. Nokia's 
market share will make Qt an extremely interesting target platform 
for  mobile  applications  as  well.  Soon  after  the  Trolltech 
acquisition, Nokia announced support for Qt on the Maemo Linux 
(http://maemo.org/) and Series 60 Symbian (http://www.s60.com/) 
platforms. 

3.2. Lively for Qt – Introduction
Lively  for  Qt (http://lively.cs.tut.fi/qt)  –  or  more  formally  the 
Lively Kernel  port  for  the  Qt  platform –  is  a  web application 
platform  that  runs  on  top  of  the  Qt  framework.  The  system 
supports the development of JavaScript applications that run both 
in  the  web  browser  and  as  standalone  mobile  “phonetop” 
applications. Applications can leverage the rich APIs offered by 
the  Qt  platform,  and  they  support  direct  manipulation,  instant 
display  updates  and  all  the  typical  2D  graphics  capabilities 
familiar from desktop computing environments. Applications can 
be downloaded dynamically from the Web, and they require no 
explicit installation.

In addition to its application execution capabilities, Lively for Qt 
can  also  function  as  an  integrated  development  environment 
(IDE).  These  features  are  familiar  from  the  Sun  Labs  Lively 
Kernel  [7,  13]  –  the  precursor  of Lively for  Qt.  Lively for Qt 
includes a number  of tools  such as a JavaScript  class browser, 
object inspector and source code debugger that allow applications 
to be edited and modified on the fly. Although the use of such 
interactive  development  tools  is  not  very  practical  on  mobile 
devices  with  limited  screens  and  keyboards,  the  presence  of 
reflective  capabilities  means  that  applications  can  also  be 
modified over the air or via a USB cable. Such capabilities can be 
extremely convenient, e.g., for remote debugging or bug fixing of 
applications that have been downloaded earlier. 

Lively for Qt is available under an MIT-style open source license. 
The system can run on any platform for which a port of the Qt 
framework is available. As a target device for our mobile porting 
activities,  we  have  used  the  Nokia  N810  device  –  an  internet 
tablet that has a high-resolution (800 by 480 pixel) color display 
and a touch screen. It is possible to use the Lively for Qt system 
also on all the major desktop operating systems, including MacOS 
X, Linux and Windows. Furthermore, the system can run in any 
web browser using a Qt browser plug-in.

A screen snapshot of Lively for Qt running on a PC is shown in 
Figure 1. This snapshot shows Lively for Qt running a number of 
applications, widgets and tools simultaneously. All the objects on 
the display are fully interactive and changeable; in short, lively.

3.2. Lively for Qt – Key Components
Architecturally, Lively for Qt follows the high-level design of the 
Sun Labs Lively Kernel in that it consists of the following three 
key components:

1. A JavaScript engine. We have used a JavaScript engine as a 
fundamental building block for the system. The Lively for Qt 
system itself,  as well  as all  the applications  and tools  have 
been written in JavaScript. 

The JavaScript  support  in Lively for Qt is  built  around  the 
QtScript scripting  engine  that  has  been  part  of  the  Qt 
framework  since  version  4.3.  In  the  current  version  of  Qt 



(version  4.5),  the  JavaScript  engine  is  still  built  around  a 
simple  interpreter,  and  is  therefore  rather  slow.  However, 
future versions of Qt will include a modern, high-performance 
JavaScript  virtual  machine  that  leverages  just-in-time 
compilation.

2. Desktop quality graphics APIs. As in the Lively Kernel,  we 
believe  that  a  fundamental  requirement  for  a  modern  web 
programming environment  is  the  availability  of  a  powerful 
graphics API that provides support for direct drawing, direct 
manipulation, and a rich set of predefined graphical widgets. 
Furthermore,  for  improved  efficiency  and  development 
flexibility,  we believe  the  APIs  should  support  procedural 
(and not only declarative) development style. 

The  graphics  capabilities  of  Lively  for  Qt  have  been 
implemented  on  top  of  the  QGraphicsView framework 
provided by Qt. This framework makes it possible to define 
graphical  objects  that  are  managed  automatically  by  Qt. 
Repainting,  Z-order  management,  layouts,  stylesheets  and 
graphical  transformations  such  as object  rotation  or  scaling 
are  supported  out  of  the  box.  Furthermore,  the  system 
supports dozens and dozens of predefined graphical widgets 
that can be used programmatically from JavaScript. 

3. Asynchronous HTTP networking. All the networking requests 
in Lively for Qt are performed asynchronously, utilizing the 
QNetworkRequest and  QNetworkAccessManager classes  of 
Qt. The use of asynchronous networking is critical in modern 
web environments, so that network requests can be performed 

without any adverse impact on the interactive response of the 
system.

In addition to the three key building blocks summarized above, 
Lively for Qt includes a large number of additional APIs that are 
courtesy of  the  underlying Qt  framework.  The APIs  (originally 
written  in  C++)  have  been  made  visible  to  the  JavaScript 
environment  using  a  tool  called  QtScriptGenerator 
(http://labs.trolltech.com/page/Projects/QtScript/Generator).

Furthermore,  as  was  mentioned  already  earlier,  the  system 
includes various interactive development tools (e.g., a source level 
debugger supporting breakpoints,  single stepping and call  stack 
visualization) that can be used for inspecting and modifying the 
system on the fly. 

In  the  implementation  of  Lively  for  Qt,  we  have  utilized  a 
JavaScript library called  Prototype (http://www.prototypejs.org/). 
The Prototype library provides numerous convenience functions 
and additional syntactic sugar for defining JavaScript classes in a 
more structured fashion. Application development principles with 
Lively for Qt will be discussed in more detail in the next section.

4.APPLICATIONS AND DEVELOPMENT 
STYLE
We have built a large number of applications with Lively for Qt. 
Since Lively for Qt is  a web application  environment,  most  of 
these  applications  utilize  various  existing,  widely-used  services 
available on the Web. Many of the applications are mashups that 

Figure 1. Lively for Qt running a number of applications, widgets and tools simultaneously



combine  data  from multiple  web  sites.  The  applications  range 
from  map-based  applications  to  image  and  comic  scrapbooks, 
media players and games. Below we briefly summarize some of 
the  applications  and  discuss  the  development  style  used  in 
developing them.

4.1. Sample Applications
QtWeatherCameras:  Live  Road  Weather.  The 
QtWeatherCameras application shown in  Figure  2 is a mashup 
that utilizes the Google Maps JavaScript API [6] and the live road 
weather  camera  information  available  from  Finnish  Road 
Administration  (http://www.tiehallinto.fi/).  The  application  uses 
the Google Maps API to calculate an optimal route between two 
chosen points on the map of Finland. The application then obtains 
information  about  the  nearest  road  weather  cameras  along  the 
route,  and  displays  those  cameras  as  markers  on  the  map (see 
Figure 2). When the user clicks on any of the markers on the map, 
a  live  image and  current  weather  conditions  from the  selected 
camera are fetched.

Figure 2. QtWeatherCameras application

QtMapNews:  Geotagged RSS Feed Viewer.  The  QtMapNews 
application shown in Figure 3 is a mashup that displays geotagged 
news items and other geotagged information utilizing the Google 
Maps API. The application includes a  QTreeWidget (tree view) 
component  that  lists  a  selection  of  predefined  geotagged  RSS 
feeds:

– Earthquakes: All the Magnitude 5 or greater earthquakes in 
the world in the past seven days.

– Emergencies: The last one hundred incidents/emergencies in 
Finland based on information available from Finnish Rescue 
Service (http://www.pelastustoimi.fi/). 

– News:  Geotagged  news  from  CNN,  Yahoo,  Yle  (Finnish 
Broadcasting  Service)  and  other  news services  around  the 
world. 

The user  can add more RSS feeds by pressing a  QPushButton  
labeled “Add...”, which will open a simple dialog to enter a new 
RSS feed. If the new feed is not a geocoded GeoRSS feed, the 
QtMapNews application  uses  a  publicly  available  RSS-to-
GeoRSS converter service on the Web to geocode items contained 
within the RSS feed. After the geocoding process, the items in the 
feed are displayed on the map as markers. When the user clicks on 
a marker, an overview of the news item is displayed on the map.

Figure 3. QtMapNews application

An interesting additional feature of the QtMapNews application is 
that  it  includes  an  embedded  web  browser  to  display  more 
detailed information about the selected map item. Whenever the 
user clicks on a map item that contains an URL, a web browser 
view is opened inside the QtMapNews application (on top of the 
map) to display the contents of that web page. The web browser is 
implemented  using  Qt's  QWebView widget  that  is  displayed 
instead of the map view when necessary.

QtFlickr:  Animated Flickr  Photo  Viewer  Based  on Twitter 
Trends. QtFlickr (see Figure 4) is a photo viewer application that 
fetches images from Flickr (http://www.flickr.com/) photo service 
based on keywords (photo tags) that are obtained automatically 
from the Twitter (http://www.twitter.com/) microblogging service, 
based on current Twitter trends (http://twitter.com/trends). Images 
are displayed using timer-based animation (rotation).

The general  idea of  this  application  is to  automatically display 
images that reflect the most actively microblogged topics in the 
world. For instance, when the screenshot of the application shown 
in  Figure 4 was taken,  the most actively discussed topic in the 
world was the swine flu (H1N1).

Figure 4. QtFlickr application

4.2. Development Style Illustrated
In Lively for Qt, it is possible to develop applications in two basic 
ways:  (1)  using  a  conventional  source  code  editor  or  (2) 
interactively using the tools (such as the class browser or object 
inspector) built  into  the Lively for Qt system itself.  For mobile 
devices, application development usually takes place on a separate 
development workstation. The applications are downloaded to the 



mobile device dynamically when the execution of the application 
begins.

The development style associated with Lively for Qt is based on 
imperative,  procedural  development  style  familiar from desktop 
software development. All the application code in Lively for Qt is 
written in JavaScript, utilizing the rich APIs provided by Qt. This 
is in contrast with traditional web technologies, which rely heavily 
on declarative languages such as HTML and CSS. In this respect, 
our applications bear close resemblance to applications developed 
with Rich Internet Application (RIA) platforms. such as  Adobe 
AIR [14] or Microsoft Silverlight [11].

Two different  coding  styles  are  supported:  one  based  on  pure 
ECMAScript  (ECMA standard  262  [4])  without  any additional 
syntactic  sugar,  or  the  more  structured  class  definition  syntax 
provided  by the  Prototype library (http://www.prototypejs.org/). 
The code samples shown here use the former coding style.

In this brief paper there is not enough room for a complete source 
code example to  illustrate  the  development  style in  detail.  The 
code sample in Listing 1 illustrates the definition of the main class 
of the QtFlickr application discussed earlier. 

Function   FlickrWidget shown  in  Listing  1  defines  the  photo 
viewer class and its constructor. The class is defined as a subclass 
of Qt's class QWidget, allowing the application to flexibly behave 
both as a standalone main application (main window) as well as a 
widget that can be embedded in other Qt components. 

The  FlickrWidget constructor  sets  up  the  UI  components  and 
connects  the  components  to  the  required  actions.  Two  layout 
components are created to arrange widgets within the application 
window. A QHBoxLayout instance is used for horizontally lining 
up  the  QLabel widgets  shown  at  the  top  of  the  application 
window.  A  QVBoxLayout object  then  vertically  arranges  the 
QHBoxLayout object  and the  QLabel object  holding the  image 
(QPixmap)  to  be displayed.  Two separate  QPixmap objects  are 
used for  images: the  first  one holds  the  current  image and the 
second one the image to be displayed next.

Three  QTimer timer objects are utilized to execute functions in 
regular intervals. The first timer called changeTagsTimer handles 
the  downloading  of  image  tags  from  Twitter  using  Qt's 
QNetworkAccessManager class.  The  second  QTimer called 
fetchImageTimer is  used  for  downloading  the  next  image 
asynchronously from Flickr on the background after the current 
image has been displayed for five seconds. The third timer called 
rotTimer is  used  for  rotating  the  current  image.  Qt's  connect 
function  is  used  for  connecting  the  timers  to  the  callback 
functions that are invoked when the timers are triggered.

Listings  2  and  3  illustrate  the  coding  style  used  in  the 
asynchronous  network  requests.  Function  getTwitterTrends, 
shown in Listing 2, is used for obtaining the latest microblogging 
trends from Twitter.  At first  a URL pointing to  a trend file  (a 
JSON file available from Twitter's web site) is defined. The actual 
asynchronous  HTTP GET request  is  then  sent  using  the  class 
QNetworkAccessManager.

Parameter twitterReplyFinished defines the callback function that 
will be invoked when the asynchronous network request has been 
completed. The function  twitterReplyFinished,  shown in Listing 
3, processes the JSON file that contains a list of Twitter trends. 
The JSON string is parsed and the tags in it are stored in an array. 
When the individual  tags have been obtained,  a function called 
loadImageFeed  is then invoked to load images from Flickr. The 
loadImageFeed function uses the QNetworkAccessManager class 
to download a list of image URLs asynchronously. The definition 
of the loadImageFeed function and its callback function is beyond 

function FlickrWidget(parent) { 
  // FlickrWidget is a subclass of QWidget
  QWidget.call(this, parent); 
  // The image references
  this.flickrUrl = 'http://api.flickr.com/'
    +'services/feeds/'
    +'photos_public.gne?format=rss2';
  this.imageUrls = new Array(); 
  // The visible UI components
  this.currentTagLabel = new QLabel("", this);
  this.imageLabel = new QLabel(this); 
  this.imageLabel.setSizePolicy(
    QSizePolicy.Ignored, QSizePolicy.Ignored); 
  this.imageLabel.alignment = Qt.AlignCenter; 
  this.imagePixmap = new QPixmap(); 
  this.nextPixmap = new QPixmap(); 
  // The timers for downloading and rotation
  this.changeTagsTimer = new QTimer(this); 
  this.changeTagsTimer["timeout"].connect(this, 
    this.changeTagsTimerTimeout); 
  this.changeTagsTimer.start(30000); // 30 seconds 
  this.fetchImageTimer = new QTimer(this); 
  this.fetchImageTimer["timeout"].connect(this, 
    this.fetchImageTimerTimeout); 

 
  this.rotTimer = new QTimer(this); 
  this.rotTimer["timeout"].connect(this, 
    this.rotTimerTimeout); 
  this.angle = 90; 
  // The layout components
  var hBoxLayout = new QHBoxLayout(); 
  hBoxLayout.addWidget(new QLabel("Tags:"),0,0);
  hBoxLayout.addWidget(this.currentTagLabel,1,0); 
  this.layout = new QVBoxLayout(); 
  this.layout.addLayout(hBoxLayout); 
  this.layout.addWidget(this.imageLabel,1,0); 
  this.resize(300,300); 
  this.getTwitterTrends(); 
}
   
Listing 1: The main function (JavaScript class) FlickrWidget

FlickrWidget.prototype.getTwitterTrends = 
function() {
  var url = 'http://search.twitter.com/'
    + 'trends.json';
  var accessMgr = new QNetworkAccessManager(this);
  accessMgr["finished(QNetworkReply*)"].connect(
    this, twitterReplyFinished);
  accessMgr.get(new QNetworkRequest(
    new QUrl(url)));
}

Listing 2: Function getTwitterTrends



the scope of this paper; however, the behavior of those functions 
is analogous to the functions shown in Listing 2 and 3.
twitterReplyFinished = function(reply) {
  var trendJSONString = 
    reply.readAll().toString();
  var trendJSONObject = 
    eval('(' + trendJSONString + ')');
  var tags = new Array();
  for(i=0;i<trendJSONObject.trends.length;i=i+1) {
    tags.push(trendJSONObject.trends[i].name);
  }
  this.loadImageFeed(tags);
}

Listing 3: Function twitterReplyFinished

To support image animation (rotation), the  QTimer object stored 
in  the  rotTimer  variable  invokes  a  function  called 
rotTimerTimeout (shown in Listing 4) every 50 milliseconds. The 
function  utilizes  a  QTransform object  to  rotate  the  currently 
displayed image. Qt's fast transformation mode is used instead of 
smooth  transformation  to  improve  animation  performance  on 
mobile devices at the cost of the quality of the displayed images. 
If the angle of rotation is 90 or 270 degrees, the image is projected 
sideways and is invisible to the user. At that point the image can 
be switched to the next one.

Since image rotation is rather computation-intensive, it is not well 
suited  to  low-end  mobile  devices.  We  have  used  it  in  this 
application, because it gives a rather realistic view of the limited 
processing  power  and  the  graphics  capabilities  of  the  mobile 
device and its software stack.

5.DISCUSSION AND RELATED WORK
Currently there are still major obstacles to the widespread use of 
mobile  web applications.  These  obstacles  revolve  around  CPU 
and memory limitations,  network bandwidth or cost  issues, and 
even more importantly, screen size limitations. Many web services 
and applications that run well in a desktop browser are next to 
unusable in mobile devices. 

Over  the  years,  numerous  solutions  have  been  proposed  to 
overcome the challenges. These include custom solutions to create 
the  “mobile  web”,  i.e.,  custom-built  web  technologies  targeted 
specifically  to  mobile  devices.  Such  technologies  include  the 
infamous  Wireless  Application  Protocol  (WAP) 
(http://www.wapforum.org/),  and  various  special  gateways  that 
automatically transliterate and customize web services and content 
for  use  in  mobile  devices  with  different  screen  sizes.  Many 
popular web sites today offer special versions of their services and 
applications that have been tailored to mobile devices.

We  believe  that  eventually  there  will  be  “One  Web”,  as 
envisioned  in  the  W3C  Mobile  Web  Best  Practices  document 
[10], meaning that the same information and services should be 
available to users irrespective of the device they are using. 

However, currently One Web is still a dream. Because of various 
limitations in the mobile space, it is not yet feasible to run full-
fledged web applications in a web browser on a mobile device. 
The performance of the web browser simply is not good enough 
for mobile use. A partial reason for this is the extensive use of 
declarative languages, which makes it difficult for the application 
developer to have any control over performance. Furthermore, the 
graphics  capabilities  of the  browser –  while well-suited for the 
presentation of document- and form-structured information – are 
rather  inefficient  when  used  for  interactive  applications.  More 
generally, the lack of rich developer APIs inside the web browser 
is  a  serious  impediment  for  developing  real,  full-fledged 
applications.

Until  the  problems above  have  been  solved,  a  custom runtime 
environment is required instead of an off-the-shelf web browser in 
order to create a practical  environment for mobile applications. 
Examples  of  such  custom  runtimes  include  Adobe  AIR [14], 
Microsoft Silverlight [11] and Sun's JavaFX [1]. All these systems 
offer a rich set of developer APIs that can be used from a dynamic 
programming language.  Our  Lively for  Qt  system is  similar  to 
these other Rich Internet Application systems, except in that our 
system places more focus on interactive development capabilities 
and  on  the  development  of  mashups  that  can flexibly combine 
content from multiple web sites. Furthermore, the use of Qt has 
given us additional benefits that are summarized below.

6.BACK TO THE VISION: LESSONS 
LEARNED AND FUTURE WORK
The Lively for Qt system, in its current form, fulfills the majority 
of the goals defined as part of our vision presented in Section 2. 
Basically, we have created a JavaScript application environment 
that offers rich set of graphics and networking APIs. Additionally, 
the  platform  supports  a  wide  variety  of  other  APIs  that  are 
provided  by  the  underlying  Qt  environment.  Furthermore,  the 
environment  can  run  on  a  large  number  of  target  platforms, 
including the web browser using a Qt plugin component.

The use of Qt has given us a number of significant benefits. These 
include:

– high-performance,  cross-platform  graphics  architecture  that 
supports  direct  manipulation,  efficient  event  handling, 
layouts,  stylesheets,  and  flexible  graphical  transformations 
such as rotation and scaling;

FlickrWidget.prototype.rotTimerTimeout=function(){
  // When current image is drawn sideways,
  // switch to the next image
  if (this.angle % 90  == 0 || 
      this.angle % 270 == 0) {
  
    // Switch to the next image
    this.imagePixmap = 
      new QPixmap(this.nextPixmap);
  }
  // Calculate transformation (rotation)
  var trans = new QTransform();
  trans.rotate(this.angle, Qt.YAxis);
  trans.rotate(this.angle, Qt.ZAxis);
  // Transform and display the image
  this.imageLabel.setPixmap(
    this.imagePixmap.transformed(
      trans, Qt.FastTransformation));
}

Listing 4: Function rotTimerTimeout



– a  large  number  of  predefined,  mature,  well-documented 
widgets  that  adapt  to  the  native  look-and-feel  of  the  target 
platform;

– built-in web browser support  with  rich APIs for processing 
and generating web content.

Without Qt, the implementation of a system offering comparable 
capabilities would have been dramatically more challenging and 
tedious.

The  current  Lively  for  Qt  system  is  still  work  in  progress. 
Additional work is required especially in two areas: security and 
mobile-specific  APIs.  The  security  issues  in  web  application 
development are well known, so we do not delve into details here. 
Basically, the problems boil  down to the lack of a fine-grained 
security model that could reliably distinguish between trusted and 
untrusted network-downloaded applications,  and grant access to 
security-critical features and APIs (such as the local file system) 
accordingly.  Insufficient  namespace  isolation  in  JavaScript  is 
another  major problem. For a more detailed discussion on web 
application security issues, refer to [3] and the publications of the 
Open Web Application Security Project (http://www.owasp.org/) 
and  the  Web  Application  Security  Consortium 
(http://www.webappsec.org/).

Mobile-specific APIs such as a camera API, Bluetooth API, SMS 
messaging,  multimedia  messaging  and  global  positioning 
(location) APIs will be part of the Qt environment later, and we 
will integrate such APIs in our system as soon as they become 
available.  Furthermore,  the  introduction  of  a  high-performance 
JavaScript engine in a future version of Qt should give us a major 
performance boost in running large applications. With a built-in 
high-performance JavaScript engine, it should become practical to 
run applications with 3D graphics as well. An interesting example 
of a scripted 3D graphics environment is available from Trolltech 
Labs (http://labs.trolltech.com/gitweb?p=WolfenQt).

7.CONCLUSION
This  paper  has  introduced  Lively  for  Qt:  a practical  JavaScript 
application  platform  that  supports  the  development  of  highly 
interactive mobile web applications and mashups that run both in 
the web browser and as standalone “phonetop” applications. The 
system  runs  on  top  of  Qt –  a  cross-platform  application 
framework that was recently acquired by Nokia. In addition, we 
presented  our  vision  for  mobile  web  applications,  as  well  as 
summarized  the  experiences  and  lessons  learned  during  the 
development of the Lively for Qt system. 

In  conclusion,  we  believe  that  web  applications  will  open  up 
entirely new possibilities for software development by making it 
possible  to  deploy applications  instantly  worldwide  and  to  run 
them without installation. With the work presented in this paper, 
we  have  demonstrated  that  mobile  devices  can  host  web 
applications that support rich user interaction, advanced graphics, 
integrated development and dynamic application deployment. We 
hope that this paper, for its part, encourages people to continue 
the work in this exciting new area.

8.ACKNOWLEDGMENTS
This  research  has  been  supported  by  the  Academy of  Finland 
(grant 115485).

9.REFERENCES
[1] Clarke, J., Connors, J., Bruno, E., JavaFX: Developing Rich 

Internet Applications. Prentice Hall (Java Series), 2009.
[2] Crane, D., Pascarello, E, James, D., Ajax in Action. Manning 

Publications, 2005.
[3] Cross, M., Developer's Guide to Web Application Security. 

Syngress Publishing, 2007.
[4] ECMA Standard 262: ECMAScript Language Specification 

(3rd edition, December 1999). Web link: http://www.ecma-
international.org/publications/ standards/Ecma-262.htm.

[5] Flanagan, D., JavaScript: The Definitive Guide (5th Edition). 
O'Reilly Media, 2006.

[6] Gibson, R., Erle, S., Google Maps Hacks. O'Reilly Media, 
2006.

[7] Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., Mikkonen, 
T., The Lively Kernel – A Self-Supporting System on a Web 
Page. In Proceedings of the 2008 Workshop on Self-
Sustaining Systems (S3'2008, Potsdam, Germany, May 15-
16, 2008), Lecture Notes in Computer Science LNCS5146, 
Springer-Verlag, 2008, pp.31-50.

[8] Java ME Mobile Service Architecture (MSA) Specification. 
Java Community Process Specification Request JSR 248. 
Web link: http://jcp.org/en/jsr/detail?id=248.

[9] Mikkonen, T., Taivalsaari, A., Creating a Mobile Web 
Application Platform: The Lively Kernel Experiences. In 
Proceedings of the 24th ACM Symposium on Applied  
Computing (SAC’2009, Honolulu, Hawaii, March 8-12, 
2009), pp.177-184.

[10] Mobile Web Best Practices 1.0. World Wide Web 
Consortium Recommendation Document (July 29, 2008). 
Web link: http://www.w3.org/TR/mobile-bp/.

[11] Moroney, L., Introducing Microsoft Silverlight 2.0 (2nd 
edition). Microsoft Press, 2008.

[12] Riggs, R., Taivalsaari, A., Van Peursem, J., Huopaniemi, J., 
Patel, M., Uotila, A., Programming Wireless Devices with  
the Java™ 2 Platform, Micro Edition (2nd Edition). 
Addison-Wesley (Java Series), 2003.

[13] Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K., Web 
Browser as an Application Platform. In Proceedings of the 
34th Euromicro Conference on Software Engineering and  
Advanced Applications (SEAA'2008, Parma, Italy, 
September 3-5, 2008), IEEE Computer Society, pp.293-302.

[14] Tucker, D., Casario, M., De Weggheleire, K., Tretola, K., 
Adobe AIR 1.5 Cookbook. O'Reilly Media, 2008.


	1.INTRODUCTION
	2.A PLATFORM FOR MOBILE WEB APPLICATIONS: THE VISION
	3.LIVELY FOR QT
	3.1. Introduction to Qt
	3.2. Lively for Qt – Introduction
	3.2. Lively for Qt – Key Components

	4.APPLICATIONS AND DEVELOPMENT STYLE
	4.1. Sample Applications
	4.2. Development Style Illustrated

	5.DISCUSSION AND RELATED WORK
	6.BACK TO THE VISION: LESSONS LEARNED AND FUTURE WORK
	7.CONCLUSION
	8.ACKNOWLEDGMENTS
	9.REFERENCES

