
Antero Taivalsaari & Tommi Mikkonen
Simplifying Interactive Programming with
Keywords ’that’ and ’those’

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 8
Tampere University of Technology. Department of Software Systems. Report 8

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 8
Tampere University of Technology. Department of Software Systems. Report 8

Antero Taivalsaari & Tommi Mikkonen

Simplifying Interactive Programming with Keywords ’that’ and
’those’

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos
Tampere 2009

ISBN 978-952-15-2284-0 (PDF)
ISSN 1797-836X

Simplifying Interactive Programming
with Keywords 'that' and 'those'

Antero Taivalsaari
Tampere University of Technology

Korkeakoulunkatu 1
FI-33720 Tampere

FINLAND

antero.taivalsaari@tut.fi

Tommi Mikkonen
Tampere University of Technology

Korkeakoulunkatu 1
FI-33720 Tampere

FINLAND

tommi.mikkonen@tut.fi

ABSTRACT
Most object-oriented programming and scripting languages
provide a keyword called self or this that allows applications
to refer to the variables and functions of the current object
instance. In this paper we introduce two new keywords that
and those to facilitate interactive programming. The key idea
behind these keywords is to make it easy to refer
programmatically to those objects that are currently under
manipulation in the graphical user interface.

Keywords
Graphical user interfaces, dynamic languages, interactive
programming, scripting.

1.INTRODUCTION
The software industry is currently experiencing a paradigm shift
towards web-based software. Applications that were
conventionally written for specific operating systems, CPU
architectures or devices are now increasingly targeted to the
Web, to be downloaded and executed inside the web browser.
Web applications are far more dynamic than conventional
desktop applications, e.g., in that they usually require no
compilation, binaries or explicit installation.

The emergence of the Web as an application platform has led to
a renaissance of dynamic languages. A whole new generation of
programmers are growing up with languages such as JavaScript,
Perl, PHP, Python or Ruby. The attention that dynamic
languages are receiving is remarkable, and is something that has
not been witnessed since the early days of personal computers
and the widespread use of the BASIC programming language in
the 1970s and 1980s. Applications that used to be written using
static programming languages such as C, C++ or Java, are now
commonly built with dynamic languages such as JavaScript.

One of the key characteristics of dynamic programming
languages is support for interactive development. With a
dynamic language, software development and testing (and
deployment) can occur seamlessly within a uniform graphical
user interface, as demonstrated originally by the Smalltalk
programming environment [2]. In the context of the Web, it is
the web browser that is now used not only for executing
applications but also for developing them interactively.
Examples of such interactive web-based development
environments include Microsoft Popfly [3], Sun Labs Lively
Kernel [13], Yahoo Pipes [6] and the Lively for Qt system [8]
that we use in the examples shown in this paper.

Most object-oriented programming and scripting languages
provide a keyword called self or this that allows the

application to refer to the variables and functions of the current
object instance (in Smalltalk parlance: the current message
receiver). In this paper, we introduce two new keywords that
and those to facilitate interactive programming. The key idea
behind these "demonstrative pronouns" is to make it easy to
refer programmatically to those objects that are currently under
manipulation in the user interface. The main benefit of the
proposed new keywords is that they simplify the interplay
between the graphical user interface and source code that is
written and evaluated interactively.

2.THAT
Most computer systems today are based on the WIMP
(Windows, Icons, Menus and a Pointing device) metaphor
invented at Xerox PARC in the 1970s and popularized by the
Macintosh computer in the 1980s. A pointing device (such as a
mouse or a stylus) is used for choosing the object that the user
wants to manipulate (e.g., to move or resize the object).

Our proposal is to associate a keyword called that at the
source code level with the object that has been manipulated in
the user interface most recently. Such a keyword can be
extremely useful especially for interactive programming,
scripting and debugging. Consider the following example. In
Figure 1, we show a starting position in which there are two
objects on the screen: a digital clock and a simple gray
rectangle. In addition, there is a source code evaluator that
allows the user to enter source code (in this case: JavaScript
source code) and evaluate that code on the fly.

Figure 1. that keyword illustrated: starting position

1

In Figure 2, the user has clicked on the gray rectangle with the
mouse – thereby implicitly setting the that pointer to point to
the gray rectangle – and then pressed the "Evaluate" button of
the source code evaluator. (Note: We assume that clicking on
the code evaluator itself does not change the value of the that
pointer.) The JavaScript code snippet "that.rotate(10);"
shown in the evaluator was then executed to rotate the gray
rectangle by ten decimal degrees, as illustrated in Figure 2.

Figure 2. that keyword illustrated: the situation after
clicking the gray rectangle and then invoking "Evaluate"

In Figure 3, the user has clicked on the digital clock and then
pressed the "Evaluate" button again. As seen in Figure 3, now
the digital clock has been rotated as well.

Figure 3. that keyword illustrated: the situation after
clicking the digital clock and invoking "Evaluate" again

The that keyword has various use cases. One of the most
practical use cases is to utilize the that keyword to capture
pointers to objects on the screen. This is especially convenient
in situations in which the user has constructed a complex object
interactively (e.g., a graphical window consisting of multiple
panes and other substructures), and the user would then want to

pick one of those substructures as a target for interactive
scripting. A simple example of such use is shown in Figure 4.

Figure 4. Using that keyword to create a programmatical
reference to an object

In Figure 4, we assume that the user has clicked on the digital
clock object, thereby implicitly setting the that pointer to refer
to the digital clock. At the source code level, the user then
assigns the current value of that to a new variable called
myclock, thereby creating a programmatical reference to the
digital clock object. The myclock variable can then
subsequently be used for manipulating the clock from other
interactive scripts and elsewhere in source code. Variable
myclock will remain pointing to the digital clock even when
the value of that will later change.

Figure 5 shows a similar example, except that in this case the
user has clicked on a substructure of a more complex graphical
object in order to manipulate the substructure
programmatically. More specifically, in this example the
programmer wants to obtain a reference to a map view
component that is inside an application that contains various
other components and widgets as well.

Figure 5. Using that keyword to obtain a reference to a
substructure of an application

2

In the example shown in Figure 5, the programmer assigns the
current value of the that pointer to a variable called
myMapView, and then subsequently utilizes the myMapView
variable to pan the map view to the right and down by ten
pixels.

Without the that keyword, the process of picking up pointers
to arbitrary substructures in the graphical user interface can be
really tedious. In a typical situation, the user would have to
open a separate tool – such as a class browser or object
inspector – to visualize the internal structure of the map view
component. By utilizing the information displayed by such a
tool, the programmer could then manually traverse to the
specific location in the application structure, and create a direct
pointer to the desired object. Usually, the programmer would
have to type a rather long path name (something like
myapp.subcomponent.subsubcomponent.subsubsub.map
view) to programmatically obtain a reference to the desired
substructure. The presence of the that keyword makes it
possible to avoid such hassles altogether.

3.THOSE
An important additional characteristic of a graphical user
interface based on the WIMP metaphor is multiple selection.
For instance, in Mac OS, Linux or Windows applications, the
user commonly clicks and then drags the mouse to perform text
selection or to select a number of objects in a file browser or
graphics editor.

Our proposal is to associate the objects chosen using multiple
selection with a keyword called those. In a simple
implementation, the those keyword refers to a collection (such
as a JavaScript array) that holds the objects that the user has
most recently selected in the user interface, e.g., by "lassoing"
(click-dragging around) a number of objects. The user can then
iterate over those objects using familiar language mechanisms
such as a for loop.

In a more advanced implementation, the those keyword could
be implicitly associated with iteration behavior, so that a
message sent to those (e.g., "those.move(10,0);" to move
all the selected objects ten pixels to the right) would be
automatically applied to all the selected objects.

The use of the those keyword is illustrated in Figure 6. The
darker area behind the widgets in Figure 6 represents the range
of multiple selection. In this example, we are setting the value
of each selected object to 10 by manually iterating over the
objects in the those collection.

Note that in Figure 6, we use a for loop to iterate over all the
objects that are currently selected. In a more advanced
implementation – with implicit iteration associated with the
those keyword – the programmer could accomplish the same
behavior in a more direct way by writing
“those.setValue(10);”.

Like the that pointer, the those pointer has various uses in an
interactive programming and scripting environment. It can be
used for easily applying the same script programmatically to all
the objects that the user has pinpointed in the user interface. It
can also be used for obtaining a large number of references that
can then be copied to other data structures.

Figure 6. Using those keyword to programmatically
manipulate objects chosen by multiple selection

Without the those pointer, the amount of work that the
programmer would have to expend to accomplish the equivalent
behavior would be considerably more significant.

4.EXPERIENCES AND COMMENTS
We have implemented that and those keywords for an
interactive, visual JavaScript web application and mashup
development environment called Lively for Qt
(http://lively.cs.tut.fi/qt) [8]. We have used the system in a
number of projects, including various international code camps
and graduate student projects at the Tampere University of
Technology, Finland. In these efforts, we have found the
proposed new keywords extremely useful especially during
interactive development, testing and debugging, and also during
live application demos to large audiences. The keywords serve
as a "glue" that bridges the gap between conventional source
code editing and visual GUI-driven development. The proposed
keywords can also facilitate interactive debugging considerably,
allowing the user to effortlessly "grab" pointers to visual objects
and their substructures on the screen. Without the that and
those keywords, the interplay between the GUI and source
code editing would be much more cumbersome.

Furthermore, the proposed new keywords are helpful in a web
programming environment that is running in a mobile device or
some other “input-constrained” environment. With the help of
the that and those keywords, the user can easily apply the
same script(s) to different objects on the screen without having
to spend a lot of time editing and customizing the scripts to use
different variable names in the source code.

3

5.RELATED WORK
Techniques for visual programming and direct manipulation
have been studied for decades, starting from Doug Engelbart's
work on the NLS system [1] and Ivan Sutherland's work on
Sketchpad [12] in the early 1960s. These pioneering activities
were followed by the development of the Smalltalk system at
Xerox PARC in the 1970s [2] and Ben Schneiderman's early
research work on user interfaces based on direct manipulation
[10]. Numerous visual programming languages and
environments have been proposed over time. For instance, the
Fabrik system [4] was one of the first truly "program-by-wire"
environments in which programming was performed mainly by
visually connecting various graphical elements to each other.
Demonstrational user interfaces [9] took visual programming
further, sometimes attempting to eschew with conventional
source code altogether.

Our work on the that and those keywords has been inspired
by more conventional interactive programming environments in
which source code still plays a central role. For instance,
Seymour Papert's Logo programming language [7] – developed
originally in the late 1960s – supported a turtle graphics system
in which the location of the graphics cursor ("turtle") on the
screen was maintained automatically by the system. The
essential commands of the Logo programming language, such
as LT (for turning the turtle left), RT (for turning the turtle
right), and FD (for moving the turtle forward), rely on the
implicitly maintained turtle location and direction information,
so that the user can interactively/programmatically control the
movement of the turtle in the user interface. Our that and
those keywords are similar in spirit but their use is not
restricted only to turtle graphics. Rather, our keywords can be
used for commanding any object(s) that are currently under
manipulation in the user interface.

Regarding the possibility of creating pointers to interactively
created objects in the graphical user interface, our work has
been inspired by systems such as Smalltalk [2] and Self [11,
14]. In the Self programming environment, for instance, there is
a "drilling" tool that allows the programmer to obtain a "core
sample": a visual summary of all those objects that are currently
under the mouse cursor, starting from the topmost object to the
bottommost graphical object. Similar capabilities are present
also in the Squeak Smalltalk environment [5] and in the Sun
Labs Lively Kernel JavaScript environment [13]. However, in
those systems there is no easy way to convert the obtained
information into pointers that could be manipulated at the
source code level.

6.CONCLUSION
In this paper we have introduced two new keywords that and
those to facilitate interactive programming. The key idea
behind these new keywords is to make it easy to refer
programmatically to those objects that are currently under
manipulation in the graphical user interface. While the
proposed new keywords are not intended for purely visual
programming, the new keywords can be very useful in web-
based scripting and development environments in which these
is a need to manipulate complex, dynamically created objects
from an interactive source code or script evaluator.

7.ACKNOWLEDGMENTS
The initial work behind the ideas presented in this paper was
completed when the first author was working at Sun
Microsystems Laboratories. The authors would like to thank
Sun Labs and the Academy of Finland (grant 115485) for their
support during this work.

8.REFERENCES
[1] Engelbart, D. C. Augmenting Human Intellect: A

Conceptual Framework. Summary Report AFOSR-3223,
Stanford Research Institute (Menlo Park, California,
USA), October 1962.

[2] Goldberg, A. and Robson, D. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, 1983.

[3] Griffin, E. Foundations of Popfly: Rapid Mashup
Development. Apress, 2008.

[4] Ingalls, D., Wallace, S., Chow, Y-Y., Ludoph, F. and
Doyle, K. Fabrik: A Visual Programming Environment. In
Proceedings of OOPSLA'88 Conference (San Diego,
California, September 25-20, 1988), ACM SIGPLAN
Notices 23, 11 (November 1988), 176-190.

[5] Korienek, G., Wrensch, T. and Dechow, D. Squeak: A
Quick Trip to ObjectLand. Addison-Wesley, 2001.

[6] Loton, T. Mashup Case Studies with Yahoo! Pipes.
CreateSpace Press, 2008.

[7] Lukas, G. and Lukas, J. The LOGO Language: Learning
Mathematics Through Programming. Entelek Press, 1977.

[8] Mikkonen, T., Taivalsaari, A. and Terho, M. Lively for Qt:
A Platform for Mobile Web Applications. In Proceedings
of the ACM Mobility Conference 2009 (Sophia Antipolis,
France, September 2-4, 2009), ACM Press.

[9] Myers, B. Demonstrational User Interfaces: A Step
Beyond Direct Manipulation. IEEE Computer, 25, 8
(August 1992), 61-73.

[10] Schneiderman, B. Direct Manipulation: A Step Beyond
Programming Languages. IEEE Computer, 16, 8 (August
1983), 57-69.

[11] Smith, R.B., Maloney, J. and Ungar, D. The Self-4.0 User
Interface: Manifesting a System-Wide Vision of
Concreteness, Uniformity and Flexibility. In Proceedings
of OOPSLA'95 Conference (Austin, Texas, October 15-19,
1995), ACM SIGPLAN Notices 30, 10 (October 1995),
47-60.

[12] Sutherland, I.E. Sketchpad: A Man-Machine Graphical
Communication System. Ph.D. Thesis, MIT, January 1963.

[13] Taivalsaari, A., Mikkonen, T., Ingalls, D. and Palacz, K.
Web Browser as an Application Platform: The Lively
Kernel Experience. Sun Microsystems Laboratories
Technical Report TR-2008-175, January 2008.

[14] Ungar, D. and Smith, R.B. Self: The Power of Simplicity.
In Proceedings of OOPSLA'87 Conference (Orlando,
Florida, October 4-8, 1987), ACM SIGPLAN Notices 22,
12 (December 1987), 227-241.

4

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FIN-33101 Tampere, Finland

	TR8-ThatAndThose-Taivalsaari-Mikkonen-2009-1129.pdf
	TR8-ThatAndThose-Taivalsaari-Mikkonen-2009-1129.pdf
	1.INTRODUCTION
	2.THAT
	3.THOSE
	4.EXPERIENCES AND COMMENTS
	5.RELATED WORK
	6.CONCLUSION
	7.ACKNOWLEDGMENTS
	8.REFERENCES

