
Sun Labs Lively Kernel
Lappeenranta Code Camp

Tommi Mikkonen
Tampere University of Technology
 tommi.mikkonen@tut.fi

Antero Taivalsaari
Sun Microsystems Laboratories
 antero.taivalsaari@sun.com

2

Background
• History of computing and software development

is full of disruptive periods and paradigm shifts.

• The computing industry reinvents itself
every 10-15 years.

• Examples of disruptive eras:
> Minicomputers in the 1970s
> Personal computers in the 1980s
> Mobile software and Web 1.0 in the late 1990s

3

The Next Paradigm Shift!
• The widespread adoption of the World Wide Web

is reshaping our world in various ways.
• Documents, photos, music, videos, news and

various other artifacts and services have already
started migrating to the Web.

• Many industries (e.g., publishing and entertainment)
are currently undergoing dramatic transformations.

• The software industry is on the brink of a similar
transformation, or a paradigm shift.

4

Evolution of the Web

 What's
 Next?

1) Simple pages with text and static images only
 (e.g., http://www.google.com)

2) Animated pages with plug-ins
 (e.g., http://www.cadillac.com)

3) Rich Internet Applications
 (e.g., docs.google.com)

http://www.google.com/
http://www.cadillac.com/

5

Web Applications – Implications
• Web-based software will dramatically change the way

people develop, deploy and use software.

• No more installations!
> Applications will simply run off the Web.

• No more upgrades!
> Always run the latest application version.

• Instant worldwide deployment!
> No middlemen or distributors needed.

• No CPU dependencies, OS dependencies, ...
> The Web is the Platform.

6

Unfortunately...
• The web browser was not designed for running

real applications.
> It was designed in the early 1990s for viewing

documents, forms and other page-structured
artifacts – not applications.

> Programming capabilities on the web were an
afterthought, not something inherent in the
design of the browser.

• Various Rich Internet Application (RIA) technologies
have been introduced recently to retrofit application
execution capabilities into the web browser.

7

Best Known RIA Technologies
• At this point, the following Rich Internet Application

development systems are best known:

> Ajax
> Ruby on Rails
> Google Web Toolkit & Google Gears
> JavaFX
> Adobe AIR (Apollo)
> Microsoft Silverlight

8

Landscape of RIA Technologies
Browser-based
- Ajax
- Google Web Toolkit
- Sun Labs Lively Kernel

Plugin-based
- Flash & Flex
- (Java FX, AIR)
- (Microsoft Silverlight)

Custom runtime
- Java, Java FX
- Adobe AIR
- Silverlight

- Run in a standard browser
- No plug-ins needed
- Platform-independent
- Browser-based UI

- Browser plug-in
 required
- Custom UI

- Custom execution
 engine required
- Runs outside
 the browser
- Custom/native UI

“thin web clients” “fat web clients”...

Technologies in the web browser serve as the lowest common denominator!

9

The Lowest Common Denominator
Technologies Supported by all the Web Browsers

• HTML. Widely established hypertext markup language for
the creation of web pages.

• CSS (Cascading Style Sheets). A stylesheet language that
is used to describe the presentational aspects of a
document. Allows stylistic aspects of a web page to be
defined independently of its content.

• DOM (Document Object Model). Platform-independent way
of representing a collection of objects that constitute a page
in a web browser.

• JavaScript. Predominant scripting language; supported by
all the commercial web browsers.

• XMLHttpRequest. An interface that allows a web application
to download data asynchronously, without blocking the UI.

10

Comments on Web Technologies
• There is surprisingly little coherence between

the different web application development systems.
> In some ways, these systems have only one thing

in common: they are all different.
• Some common themes:

> Convergence towards JavaScript and asynchronous
HTTP networking (XMLHttpRequest).

> Many systems are hybrid combinations of existing
technologies – HTML, DOM, CSS, JavaScript, PHP,
XML, ...

> Many of them are heavily dependent on tools.
> Many of them are still prototypes, in different stages

of development.

11

Why JavaScript?
• JavaScript is ubiquitous.

> Supported by all the commercial web browsers.
> “The programming language of the Internet”

• JavaScript has developer appeal.
> Familiar to people with C, C++ or Java background.

• JavaScript is truly dynamic.
> No more edit-compile-link-run-crash-debug cycles.
> Applications can be created, deployed and modified

without ever leaving the web browser.
• JavaScript has potential.

> Momentum still growing. Performance will improve.

12

Pushing the Limits
of the Web Browser:

The
Sun Labs

Lively Kernel
Project

13

Three Assumptions

• The Web is the Application Platform

• The Web Browser is the Operating
System (at least for end user applications)

• JavaScript is the de facto Programming
Language of the Web

14

Sun Labs Lively Kernel
• The Lively Kernel is a web application development

environment written entirely in JavaScript.
• Runs in a regular web browser with no installation

or plug-ins whatsoever.

• Supports real applications on the Web, with rich
user interface features and direct manipulation
capabilities.

• Enables application development and deployment
without installation or upgrades.

• Allows application development within the web
browser.

15

The Lively Kernel in a Nutshell

 Key components:

● JavaScript programming language

● Asynchronous HTTP networking

● Desktop-style graphics architecture with zooming

● Morphic application framework and widgets

Built on technologies that already exist
in the browser – no plug-ins required!

16

Morphic User Interface Framework
• The Lively Kernel is built around a user interface

framework called Morphic.
• Morphic was originally designed for the Self system,

and was later used also in the Squeak Smalltalk
system.

• Every graphical object in the system is a morph.
• Morphs reside in a world – a visual container of

objects that can be manipulated in various ways.
• Morphic provides exceptionally flexible mechanisms

for object scaling, rotation, zooming, etc.

17

Demos!

18

How is the Lively Kernel Different?
• No plug-ins! All you need is the browser.

• No installation!

• No binaries!

• Everything written in JavaScript using a
uniform set of APIs.

• Built-in IDE capabilities – applications can be
developed using the Lively Kernel itself using
nothing more than a web browser.

• In general, the system is fully interactive and “lively”

19

Where is the Lively Kernel Headed?
• The Lively Kernel was released to the public

as an Open Source project in October 2007.
• Available under GPL license at:

> http://research.sun.com/projects/lively

• Current research directions:
> support for on-the-fly creation of web sites and mashups
> better end-user programming / IDE capabilities
> running the system on mobile devices
> building more complete applications

http://research.sun.com/projects/lively

20

Browser as a Platform:
Experiences

21

Summary of Problem Areas
• During our project, we have discovered problems in

various areas related to the use of the web browser
as an application platform:

 1) Usability and user interface issues
 2) Networking and security issues
 3) Browser interoperability and compatibility issues
 4) Development style and testing issues
 5) Deployment issues
 6) Performance issues
 7) Software engineering issues

22

Usability and User Interface Issues
 Highlights:
• Limited direct manipulation capabilities
• Poorly suited I/O model between JavaScript and

the browser (via DOM)
• Poorly suited networking model between the client

and the server
• “Legacy buttons” in the browser
• Poor support for well-known mechanisms such as

cut/copy/paste, drag-and-drop, etc.

23

Networking and Security Issues
 Highlights:
• “Same origin” networking policy restrictions
• Only a limited number of simultaneous network

requests allowed
• No local storage support / no access to the local

file system
• In general: The “one-size-fits-all” sandbox security

model provides only limited access to host platform
capabilities

24

Browser Compatibility Issues
 Highlights:
• Incompatible DOM implementations
• Incompatible JavaScript implementations
• Incompatible graphics library implementations
• Disregard for official standards
• Lack of official standards (e.g., lack of advanced

JavaScript libraries, no agreement on the future of
the JavaScript language itself)

• Plug-in availability

25

Development Style and Testing Issues
 Highlights:
• JavaScript is an extremely permissive, dynamic

language -> incremental development and testing
style required

• No static type checking
• Incompatible programs allowed -> code coverage

testing is very important
• JavaScript APIs are still limited in various areas

such as audio, storage, mobility, etc.

26

Deployment Issues
 Highlights:
• It is not clear what constitutes a “release”
• Applications are online 24x7 – when is it safe to

update them?
• “Perpetual beta syndrome”
• “Nano releases”

27

Performance Issues
• JavaScript virtual machines are still very slow
• Browser graphics libraries (e.g., SVG engines) are

also slow
• Bindings between different components are slow
• When people start writing more serious web

applications, performance issues will become
more evident

• On the positive side:
> There are a lot of opportunities to improve performance
> Current JavaScript VMs are surprisingly reliable and

almost impossible to crash

28

Software Engineering Issues
 Highlights:
• Web development is still an ad hoc activity

> ... Just like software development was until the 1970s
and 1980s before rigorous software engineering principles
were introduced.

• Web applications have reintroduced many problems
that were eliminated from SW development years ago
> Lack of modularity, use of global data structures,

widespread use of side-effects, tangled control flow.

29

Modularity Problems on the Web
• Web sites and apps tend to be highly unmodular.

> By default, everything in a web site is public.
> No clean separation of the public features of a web site

from its implementation details.
> Information hiding mainly through obfuscation/obscurity.
> No information hiding support in JavaScript (prior to v2.0)

• No widely established interface description
mechanisms or languages available.
> It is difficult to change the implementation details without

affecting the public use of a site.
> This is a serious problem especially in the development

of mashups which relies on massive third party reuse.

30

Use of Global Data Structures
and Side-Effects
• The web browser is built around the Document

Object Model (DOM).
• The DOM is effectively a large, global data structure

(attribute tree) that is shared between the browser
and other components (e.g., JavaScript engine).

• The DOM is commonly manipulated by means of
side-effects.
> The application changes DOM attributes and the browser

responds to changes at the next suitable point in time.
• Not only this mixes up procedural and declarative

style, but it is also error-prone, inefficient and
subject to various browser incompatibilities.

31

Control Flow Issues (Spaghetti Code)
• Control flow of web applications tends to be difficult

to follow.
> Different types of technologies (HTML, JavaScript, CSS,

XML, PHP) mixed up freely.
> Hard-coded references used liberally.
> Obfuscation commonly used in lieu of information hiding.

• The problems are exacerbated by the fact that web
applications cannot be (easily) checked statically.
> Incomplete programs and broken references allowed.
> No transitive closure of programs available statically.
> No support for static verification or type checking.

32

Web Development vs. Conventional Software
Conventional SW Development
- Applications
- Direct manipulation
- Directly drawn, dynamic graphics
- Conventional deployment
- Binary representations favored
- Development based on
 established engineering principles
- More formal development
- Target environment specifically
 intended for applications
- A wide variety of development
 approaches available

Web Development
- Documents
- Page / form oriented interaction
- Managed graphics, static layout
- Instant worldwide deployment
- Source code and text favored
- Development based mostly on
 conventions and “folklore”
- Informal development practices
- Target environment not
 designed for applications
- Tool-driven development
 approach

33

Future Vision: Software as a Mashup
In the future, software will
likely be built by dynamically
combining the best available
components for each purpose
by downloading them from
anywhere on the Web.

No static linking; everything
downloaded on demand.

Software development
will be an inherently
“social” activity between
developers who do not
necessarily know each other.

Web Browser

Widget
library

Stock
graphing

library

Main

applic.

L10N

Stock
quote

interface

D
ow

nlo
ad

 from different sites

34

Mashup Development Tools
• Dapper (http://www.dapper.net/)
• Google Mashup Editor (http://code.google.com/gme/)
• IBM Mashup Center (http://www.ibm.com/software/info/mashup-center/)
• IBM Project Zero (http://www.projectzero.org/)
• Intel Mash Maker (http://mashmaker.intel.com/)
• LiquidApps (http://www.liquidappsworld.com/)
• Microsoft Popfly (http://www.popfly.com/)
• Mozilla Ubiquity (https://wiki.mozilla.org/Labs/Ubiquity)
• Open Mashups Studio (http://www.open-mashups.org/)
• Yahoo Pipes (http://pipes.yahoo.com/)

http://www.dapper.net/
http://code.google.com/gme/
http://www.ibm.com/software/info/mashup-center/
http://www.projectzero.org/
http://mashmaker.intel.com/
http://www.liquidappsworld.com/
http://www.popfly.com/
https://wiki.mozilla.org/Labs/Ubiquity
http://www.open-mashups.org/
http://pipes.yahoo.com/

35

Conclusions
• Like it or not, the Web is increasingly the platform

of choice for advanced software applications.
• Web-based applications have major benefits: no

installation or upgrades needed, instant worldwide
deployment without middlemen.

• Web-based applications will dramatically change
the way people develop, deploy and use software
-> paradigm shift!

• Since the Web was not designed for applications,
there are still a lot of interesting problems to solve.

• The web browser must evolve to become a better
environment for applications and mashups.

Thank You!
Questions?
 http://research.sun.com/projects/lively
 lively@sun.com

http://research.sun.com/projects/lively

