Tommi Mikkonen

Tampere University of Technology
tommi.mikkonen@tut.fi

Antero Taivalsaari

Sun Microsystems Laboratories
antero.taivalsaari@sun.com




Background

» History of computing and software development
is full of disruptive periods and paradigm shifts.

» The computing industry reinvents itself
every 10-15 years.

» Examples of disruptive eras:
> Minicomputers in the 1970s

> Personal computers in the 1980s
> Mobile software and Web 1.0 in the late 1990s



The Next Paradigm Shift!

» The widespread adoption of the World Wide Web
IS reshaping our world in various ways.

» Documents, photos, music, videos, news and
various other artifacts and services have already
started migrating to the Web.

» Many industries (e.g., publishing and entertainment)
are currently undergoing dramatic transformations.

» The software industry is on the brink of a similar
transformation, or a paradigm shift.



@Sun

Evolutlon of the Web

-a.n;,_

S T T T

Gﬂugle

I..M-...Au.l.

-1 1) Simple pages with text and static images only

(e.g., http://lwww.google.com)

—, 2) Animated pages with plug-ins

(e.g., http://lwww.cadillac.com)

3) RICh Internet Applications

(e.g., docs.google.com)



http://www.google.com/
http://www.cadillac.com/

Web Applications — Implications

» Web-based software will dramatically change the way
people develop, deploy and use software.

* No more installations!
> Applications will simply run off the Web.

* No more upgrades!
> Always run the latest application version.

* Instant worldwide deployment!
> No middlemen or distributors needed.

* No CPU dependencies, OS dependencies, ...
> The Web is the Platform.



Unfortunately...

* The web browser was not designed for running

real applica

tions.

> |t was designed in the early 1990s for viewing
documents, forms and other page-structured

artifacts —

> Programm
afterthoug
design of t

not applications.

Ing capabilities on the web were an
nt, not something inherent in the
ne browser.

* Various Riq
have been |

N Internet Application (RIA) technologies
ntroduced recently to retrofit application

execution capabllities into the web browser.



Best Known RIA Technologies

» At this point, the following Rich Internet Application
development systems are best known:

> Ajax

> Ruby on Rails

> (Google Web Toolkit & Google Gears
> JavaFX

> Adobe AIR (Apollo)

> Microsoft Silverlight



@Sun

Landscape of RIA Technologies

Browser-based Plugin-based Custom runtime

- Ajax - Flash & Flex - Java, Java FX

- Google Web Toolkit - (Java FX, AIR) - Adobe AIR

- Sun Labs Lively Kernel - (Microsoft Silverlight) - Silverlight
- Run in a standard browser - Browser plug-in - Custom execution
- No plug-ins needed requwed engine required

the browser

- Browser-based Ul - Custom/native Ul

Technologies in the web browser serve as the lowest common denominator!

8



The Lowest Common Denominator

Technologies Supported by all the Web Browsers

» HTML. Widely established hypertext markup language for
the creation of web pages.

» CSS (Cascading Style Sheets). A stylesheet language that
IS used to describe the presentational aspects of a
document. Allows stylistic aspects of a web page to be
defined independently of its content.

* DOM (Document Object Model). Platform-independent way
of representing a collection of objects that constitute a page
in a web browser.

> JavaScript. Predominant scripting language; supported by
all the commercial web browsers.

» XMLHlttpRequest. An interface that allows a web application
to download data asynchronously, without blocking the Ul.




Comments on Web Technologies

» There is surprisingly little coherence between
the different web application development systems.

> |n some ways, these systems have only one thing
In common: they are all different.
» Some common themes:

> Convergence towards JavaScript and asynchronous
HTTP networking (XMLHttpRequest).

> Many systems are hybrid combinations of existing
g?l\c/lrlinologies —HTML, DOM, CSS, JavaScript, PHP,

> Many of them are heavily dependent on tools.

> Many of them are still prototypes, in different stages
of development.

10



Why JavaScript?

» JavaScript is ubiquitous.
> Supported by all the commercial web browsers.
> “The programming language of the Internet”

- JavaScript has developer appeal.
> Familiar to people with C, C++ or Java background.

» JavaScript is truly dynamic.
> No more edit-compile-link-run-crash-debug cycles.

> Applications can be created, deployed and modified
without ever leaving the web browser.

- JavaScript has potential.
> Momentum still growing. Performance will improve.

1"



Pushing the Limits
of the Web Browser:

The
Sun Labs
Lively Kernel
Project



S

Three Assumptions

O )

» The Web is the Application Platform

* The Web Browser is the Operating

System (at least for end user applications)

- JavaScript is the de facto Programming
Language of the Web

A J




Sun Labs Lively Kernel

* The Lively Kernel is a web application development
environment written entirely in JavaScript.

* Runs in a regular web browser with no installation

or plug-ins w
* Supports rea

natsoever.

applications on the Web, with rich

user interface features and direct manipulation

capabilities.

» Enables application development and deployment
without installation or upgrades.

* Allows application development within the web

browser.

14



The Lively Kernel in a Nutshell

- )
Key components:

= JavaScript programming language

* Asynchronous HTTP networking

* Desktop-style graphics architecture with zooming

 Morphic application framework and widgets
\ J

Built on technologies that already exist
In the browser — no plug-ins required!



Morphic User Interface Framework

» The Lively Kernel is built around a user interface
framework called Morphic.

» Morphic was originally designed for the Self system,
and was later used also in the Squeak Smalltalk
system.

» Every graphical object in the system is a morph.

» Morphs reside in a world — a visual container of
objects that can be manipulated in various ways.

» Morphic provides exceptionally flexible mechanisms
for object scaling, rotation, zooming, etc.

16



Demos!

4

un

milcrosystems

Sun Labs Lively Kernel

=@

M

I\al"l."‘I

Canva apeMorph

Characterinfo
CheapListMorph
ClipMorph

Color
ColorPickerMorph
DisplayObject
DisplayObjectList
DomEventHandler

initialize
makeMNewFace
reshape

Scripts

»

ClockMorph.prototype.setHands = function ()
{

var currentDate = new Date();

var center = this.shape.bounds().center();
var second = currentDate.getSeconds();
var minute = currentDate.getMinutes(}+second/6Fgs

var hour = currentDate.getHours()+minute/s0;

' Sun 3D Logo

this.getNamedMorph(“hours”) setRotation (hour/

wff oD

More complex
sample widgets
Development
Tools

S {Charts’

A senvice of MarketWatch

HASDAD

2,718.95

5:17 PH
13,800 2,730

13,727.03 7 o

4:03 PH

A 1279
+0.47%

12,750
13, 700
13,630
12, e00 % 2,700

2,720

2,710

Euroshares open higher after Dow gains, all eyes on Fed rate decision
Euroshares outlook - higher after Dow gains, all eyes on Fed rate decisi
ASIA MARKETS: Tokyo, Sydney Higher; Financials Lead Region Up
UPDATE: Boeing To Update Dreamliner Progress; Deadlines Still A Qu
Wall St at highest level in a month

Qr Google

17



How is the Lively Kernel Different?

* No plug-ins! All you need is the browser.
 No Installation!
* No binaries!

» Everything written in JavaScript using a
uniform set of APIs.

* Built-in IDE capabilities — applications can be
developed using the Lively Kernel itself using
nothing more than a web browser.

* In general, the system is fully interactive and “lively’

18



Where is the Lively Kernel Headed?

» The Lively Kernel was released to the public
as an Open Source project in October 2007.

» Available under GPL license at:
> http://research.sun.com/projects/lively

» Current research directions:
> support for on-the-fly creation of web sites and mashups
> better end-user programming / IDE capabilities
> running the system on mobile devices
> building more complete applications

19


http://research.sun.com/projects/lively

Browser as a Platform:
Experiences

20



Summary of Problem Areas

* During our project, we have discovered problems in
various areas related to the use of the web browser
as an application platform:

1) Usability and user interface issues

2) Networking and security issues

3) Browser interoperability and compatibility issues
4) Development style and testing issues
)
)
)

5) Deployment issues
6) Performance issues
/) Software engineering issues

21



Usability and User Interface Issues

Highlights:
» Limited direct manipulation capabilities

* Poorly suited /0O model between JavaScript and
the browser (via DOM)

» Poorly suited networking model between the client
and the server

» “Legacy buttons” in the browser

* Poor support for well-known mechanisms such as
cut/copy/paste, drag-and-drop, efc.

22



Networking and Security Issues

Highlights:
» “Same origin” networking policy restrictions

* Only a limited number of simultaneous network
requests allowed

* No local storage support / no access to the local
file system

* In general: The “one-size-fits-all” sandbox security
model provides only limited access to host platform
capabilities

23



Browser Compatibility Issues

Highlights:

* Incompatible DOM implementations

* Incompatible JavaScript implementations

» Incompatible graphics library implementations
» Disregard for official standards

» Lack of official standards (e.qg., lack of advanced
JavaScript libraries, no agreement on the future of
the JavaScript language itself)

* Plug-in availability

24



Development Style and Testing Issues

Highlights:

- JavaScript is an extremely permissive, dynamic
language -> incremental development and testing
style required

» No static type checking

* Incompatible programs allowed -> code coverage
testing Is very important

- JavaScript APIs are still limited in various areas
such as audio, storage, mobility, etc.

25



Deployment Issues

Highlights:
* |t Is not clear what constitutes a “release”

* Applications are online 24x7 — when is it safe to
update them?

* "Perpetual beta syndrome”
* “Nano releases”

26



Performance Issues

- JavaScript virtual machines are still very slow

» Browser graphics libraries (e.g., SVG engines) are
also slow

» Bindings between different components are slow

 When people start writing more serious web
applications, performance issues will become
more evident

* On the positive side:
> There are a lot of opportunities to improve performance

> Current JavaScript VMs are surprisingly reliable and
almost impossible to crash

27



Software Engineering Issues

Highlights:

» Web development is still an ad hoc activity

> ... Just like software development was until the 1970s
and 1980s before rigorous software engineering principles
were introduced.

» Web applications have reintroduced many problems
that were eliminated from SW development years ago

> Lack of modularity, use of global data structures,
widespread use of side-effects, tangled control flow.

28



Modularity Problems on the Web

* Web sites and apps tend to be highly unmodular.
> By default, everything in a web site is public.

> No clean separation of the public features of a web site
from its implementation details.

> Information hiding mainly through obfuscation/obscurity.
> No information hiding support in JavaScript (prior to v2.0)

* No widely established interface description
mechanisms or languages available.

> It is difficult to change the implementation details without
affecting the public use of a site.

> This is a serious problem especially in the development
of mashups which relies on massive third party reuse.

29



Use of Global Data Structures
and Side-Effects

* The web browser Is built around the Document
Object Model (DOM).

» The DOM is effectively a large, global data structure
(attribute tree) that is shared between the browser
and other components (e.g., JavaScript engine).

» The DOM is commonly manipulated by means of
side-effects.

> The application changes DOM attributes and the browser
responds to changes at the next suitable point in time.

* Not only this mixes up procedural and declarative
style, but it is also error-prone, inefficient and
subject to various browser incompatibilities.

30



Control Flow Issues (Spaghetti Code)

» Control flow of web applications tends to be difficult
to follow.

> Different types of technologies (HTML, JavaScript, CSS,
XML, PHP) mixed up freely.

> Hard-coded references used liberally.
> Obfuscation commonly used in lieu of information hiding.

» The problems are exacerbated by the fact that web
applications cannot be (easily) checked statically.
> Incomplete programs and broken references allowed.
> No transitive closure of programs available statically.
> No support for static verification or type checking.

K|



S

Web Development vs. Conventional Software

Web Development Conventional SW Development

- Documents - Applications

- Page / form oriented interaction | - Direct manipulation

- Managed graphics, static layout | - Directly drawn, dynamic graphics
- Instant worldwide deployment | - Conventional deployment

- Source code and text favored | - Binary representations favored

- Development based mostIX on |- Development based on

conventions and “folklore established engineering principles
- Informal development practices | - More formal development

- Target environment not - Target environment specifically
designed for applications intended for applications

- Tool-driven development - A wide variety of development
approach approaches available

32



Future Vision: Software as a Mashup

In the future, software will
likely be built by dynamically

combining the best available

components for each purpose graphing

by downloading them from «_library

anywhere on the Web. ?Qet «OM difx
- library 6 @/‘@ \interface /

No static linking; everything \0

downloaded on demand. NE

/
/\a
S am

Software development QQ <
<@

Main

will be an inherently | J 50 m—
“social” activity between

developers who do not Web Browser
necessarily know each other.

33



Mashup Development Tools

Dapper (http://www.dapper.net/)

Google Mashup Editor (http://code.google.com/gme/)

BM Mashup Center (http://iwww.ibm.com/software/info/mashup-center/)
BM Project Zero (http://www.projectzero.org/)

ntel Mash Maker (http://mashmaker.intel.com/)

LiquidApps (http://www.liquidappsworld.com/)

Microsoft Popfly (http://www.popfly.com/)

Mozilla Ubiquity (https://wiki.mozilla.org/Labs/Ubiquity)

Open Mashups Studio (http://www.open-mashups.org/)

Yahoo Pipes (http://pipes.yahoo.com/)

34


http://www.dapper.net/
http://code.google.com/gme/
http://www.ibm.com/software/info/mashup-center/
http://www.projectzero.org/
http://mashmaker.intel.com/
http://www.liquidappsworld.com/
http://www.popfly.com/
https://wiki.mozilla.org/Labs/Ubiquity
http://www.open-mashups.org/
http://pipes.yahoo.com/

Conclusions

> Like it or not, the Web is increasingly the platform
of choice for advanced software applications.

» \Web-based applications have major benefits: no
installation or upgrades needed, instant worldwide
deployment without middiemen.

* Web-based applications will dramatically change
the way people develop, deploy and use software
-> paradigm shift!

> Since the Web was not designed for applications,
there are still a lot of interesting problems to solve.

* The web browser must evolve to become a better
environment for applications and mashups.

S
@Sun

35



Thank You!
Questions?

http://research.sun.com/projects/lively
lively@sun.com



http://research.sun.com/projects/lively

