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ABSTRACT
Patch foveation corresponds to a spatially variant representa-
tion where the center of the patch is sharp while the periph-
ery is blurred. This mimics the non-uniformity of the human
visual system, whose acuity is maximal at the fixation point
(imaged by the fovea, i.e. the central part of the retina) and
low at the periphery of the visual field.

We introduce patch foveation for patch clustering in dic-
tionary learning. In particular, we consider principal com-
ponents learned from clusters of foveated patches extracted
from natural images corrupted by additive noise. Experiments
demonstrate that the first few foveated principal components
provide a better representation of the actual (non-foveated)
image than the usual principal components learned from clus-
ters of patches or windowed patches. These new results con-
firm the effectiveness of patch foveation as regularization and
preconditioning prior when processing natural images.

Index Terms— Dictionary learning, Principal Compo-
nents, Nonlocal Similarity, Denoising, Patches, Foveation.

1. INTRODUCTION

During the last decade there has been a growing interest to-
wards dictionaries or transforms learned from the data. In
particular, for the purpose of image filtering, we witnessed a
systematic trend towards online learning from structured sub-
sets often extracted from the data to be processed. Just like
adaptively learned global dictionaries typically provide more
efficient (i.e. sparse) representations than non-adaptive dic-
tionaries or fixed transforms [1], semi-local dictionaries or
transforms learned from multiple clusters of image patches
typically outperform the global ones [2]. This observation ex-
plains the success of current state-of-the-art image denoising
filters such a BM3D-SAPCA [3] or PLOW [4].

A crucial aspect in the above works concerns the selec-
tion of the cluster used for learning the dictionary. A patch-
similarity metric is usually utilized in order to define the
cluster around a given “reference” or “centroid” patch. The
methods rely on the assumption that natural images contain
a large number of mutually similar patches at different loca-
tions, hence meaningful clusters are likely to be found. Patch

~ This work was supported by the Academy of Finland (project no. 252547).

similarity is typically assessed through the Euclidean or a
weighted-Euclidean distance of the pixel intensities.

In [5], we first introduced the foveated patch distance as
an alternative to the weighted-Euclidean distance in nonlocal
imaging, leading to the concept of foveated self-similarity.
Patch foveation is performed through a suitably designed
foveation operator, which consists in a spatially variant blur
where the point-spread functions (PSFs) have bandwidth de-
creasing with the spatial distance from the patch center. This
approach is inspired by the human visual system (HVS),
which features spatially variant properties [6]: if we treat the
center of the patch as a fixation point, the foveated distance
mimics the inability of the HVS to perceive details at the pe-
riphery of the center of attention. In [7, 8] we generalized
the approach by introducing anisotropic foveation operators,
realized by means of directional PSFs.

When plugged into a classical pointwise nonlocal filter
such as the NL-means [9], the foveated distance – especially
the one induced by radially anisotropic foveation operators –
provides essential improvement in denoising quality with re-
spect to the conventional windowed distance. Such improve-
ment is verified in terms of both objective criteria and visual
appearance, particularly due to better contrast and sharpness.

In this work we explore the impact of foveation in the
identification of patch clusters for the purpose of adaptive
dictionary learning. For the sake of simplicity and clarity,
we restrict ourselves to the principal components (PC), as
eigenvectors of the second-moment matrix of a patch clus-
ter. Patch foveation operates jointly on two aspects: first, it
replaces the patches with their foveated counterparts; second,
the foveated distance (i.e. the Euclidean distance between the
foveated patches) defines the patch similarity, which induces
the weights in the second-moment matrix [10]. We call this
special form of weighted PCs the nonlocal foveated principal
components, or, simply, the foveated principal components.
Since the components are learned on foveated patches, in the
analysis they have to be composed with the foveation oper-
ator; likewise, in the synthesis, they are composed with the
inverse foveation operator. The reported experimental results
demonstrate that the foveated PCs provide much better recon-
struction of the overall image data than standard PCs based
on a conventional windowed patch distance, in spite of the



fact that the analysis is carried out on partly blurred patches.
These results are consistent with our previous findings on the
Foveated NL-means and confirm the useful interplay between
foveation and nonlocal image processing. On a very broad
sense, this newly introduced use of foveation can be inter-
preted as a form of preconditioning for the cluster selection,
and consequently for the dictionary learning.

2. PRELIMINARIES

2.1. Observation Model
We consider noisy grayscale images z : X ! R modeled as

z (x) = y (x) + ´ (x) , x 2 X ½ Z2, (1)
where X ½ Z2 is a regular pixel grid (the image domain),
y : X ! R is the unknown original noise-free image, and
´ : X ! R is i.i.d. Gaussian white noise, ´ (¢) » N

¡
0; ¾2

¢
.

2.2. Patches
Noisy and noise-free patches centered at a pixel x 2 X are
extracted from z or from y, respectively, as

zx (u) = z (u+ x) ; yx (u) = y (u+ x) ; u 2 U ,
where U ½ Z2 is a neighborhood of the origin.

Given a non-negative windowing kernel k defined over U ,
we can naturally define the windowed patches zWIN

x = zx
p

k.
Foveated patches are denoted as zFOV

x , and are obtained
through the following foveation operators.

2.3. Foveation Operator
A foveated patch zFOV

x and an anisotropic foveation operator
F½;µ take the generic form

zFOV
x (u) = F½;µ [z; x] (u) =

X
»2Z2

z(»+x) v½;µu (»¡u) , (2)

where u 2 U and v½;µu is a bivariate elliptical Gaussian PSFs
producing the blur. The blur increases with juj. The parame-
ter ½>0 determines the elongation of the PSF (as the ratio be-
tween its primary and secondary axis), and the angular-offset
parameter µ controls the relative orientation of the PSFs with
respect to the center of the patch. Specifically, µ = # ¡ \u,
where # is the absolute orientation of the primary axis and
\u is the angle of the segment between u and the center of
the patch. Radial foveation operators are obtained for µ = 0
and ½> 1, i.e. when the major axes of the PSFs are directed
along the meridian lines toward the patch center. Due to lim-
itation of space, we refer the reader to [5],[8] for illustrations
of foveated patches and foveation operators.

2.4. Patch Distances
We consider three difference distances between patches cen-
tered at generic positions x1 and x2: the usual Euclidean dis-
tance,

d(x1; x2) =
1

jU j kzx1 ¡ zx2k
2
2 ; (3)

the windowed quadratic distance,

dWIN(x1; x2) =
1

kkk1

°°°zx1

p
k ¡ zx2

p
k
°°°2

2
; (4)

and the foveated distance

dFOV(x1; x2) = kF½;µ [z; x1] ¡ F½;µ [z; x2]k2
2 =

=
°°zFOV

x1
¡ zFOV

x2

°°2

2
: (5)

If we consider the patch center as a fixation point, the foveated
distance mimics the inability of the HVS to perceive details
at the periphery of the center of attention. A constrained de-
sign of the foveation operators [5, 8] guarantees that when-
ever the difference between two patches can be modelled as
white noise, as it is the case when the two patches do not ex-
hibit structured differences, foveated distance and windowed
distance are equivalent. However, in presence of structured
differences, such as those arising in the vicinity of edges, the
windowed and foveated distances are fundamentally distinct,
with the latter providing sharper localized responses.

3. NONLOCAL FOVEATED PRINCIPAL
COMPONENTS

For any given patch z¹x (centroid), we construct a distance-
weighted cluster by considering all patches fzjgNj=1 found in
a neighborhood of ¹x (potentially the whole image) and their
foveated distance from z¹x, i.e. dFOV(¹x; xj), j = 1; : : : ; N .
We then construct the sample weighted second-moment ma-
trix

C¹x =
h¡¡!
zFOV
1 ¢ ¢ ¢

¡¡!
zFOV
N

i
W¹x

h¡¡!
zFOV
1 ¢ ¢ ¢

¡¡!
zFOV
N

iT
; (6)

where
¡¡!
zFOV
j denotes the foveated patch zFOV

j represented as
column vector, and where the diagonal matrix W¹x with expo-
nential weights, W¹x = diag (w(¹x; x1) ; : : : ; w(¹x; xN)), ad-
justs the contribution of each patch to the overall matrix de-
pending on the foveated distance dFOV(¹x; xj), j = 1; : : : ; N:

w (¹x; xj) = e¡ dFOV(¹x;xj)
¾2 =

NP
i=1

e¡ dFOV(¹x;xi)
¾2 : (7)

When a weight w (¹x; xj) is zero, it is equivalent to excluding
the corresponding patch zFOV

j from the cluster. Due to the ex-
ponential decay of the weights (7), this situation is practically
met whenever dFOV(¹x; xj) is large.

Eigenvalue decomposition of C¹x yields

UT
¹x C¹xU¹x = S¹x

where U¹x is an orthonormal matrix composed of eigenvectors
and S¹x is a diagonal matrix of eigenvalues in decreasing order
of magnitude. Each column of U¹x is an eigenvector, i.e. a
foveated PC.
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Fig. 1. Examples of the 121 principal components of 11£11 patches computed from distance-weighted clusters of patches
(left), windowed patches (center), or foveated patches (right) (see Section 3) around two distinct centroids (one for the top
row and another for the bottom row of subfigures). For each cluster, the distances and weights have been computed from the
respective Euclidean (3), windowed (4), or foveated distances (5).

3.1. Analysis
For any patch zj in the cluster, we perform analysis (projec-
tion on the eigenspaces), as

'¹x;j = UT
¹x F

¡!zj = UT
¹x

¡¡!
zFOV
j , (8)

where F is the matrix representation of the foveation opera-
tor, i.e. each row of F is a vectorized PSF v½;µu , and '¹x;j is
the spectrum of the foveated patch zFOV

j with respect to the
foveated PCs.

3.2. Synthesis
Given '¹x;j , the patch zj is reconstructed as

bz¹x;j = F¡1U¹x'¹x;j , (9)
where F¡1 is the (pseudo)inverse of F . Partial or filtered
reconstruction is obtained by shrinking, suppressing, or oth-
erwise modifying desired portions of the spectrum '¹x;j .

3.3. Illustrations
Fig. 1 gives an insight of the effect of foveation by illustrat-
ing the PCs computed from clusters of patches, of windowed
patches, and of foveated patches. The procedure for comput-
ing PCs and windowed PCs is analogous to that for foveated
PCs: the employed distances are (3), (4), or (5) (µ=0, ½=3:5),
respectively. Observe how the foveated PCs separate between
internal and peripheral features, the former characterizing the
first PCs and the latter the last PCs.

4. EXPERIMENTS

To compare the effectiveness of the different PC types, we de-
vise a simple test through the denoising of natural test images
corrupted by additive Gaussian noise. The algorithm esti-
mates each patch of the cluster as in (9), but retaining only the
first 3 PCs, i.e. all but the first 3 coefficients in the spectrum
'¹x;j are set to zero. In practice, only the first three columns
of U¹x are taken into account in (8) and (9). Overlapping
estimates for the same patch are aggregated in a weighted
average with weights proportional to w(¹x; xj)k

°°UT
¹x F

°°¡2

2
.

These weights are rather natural, and include both the similar-
ity of the patch to the cluster centroid and the noise variance
brought by each eigenvector. In the case of windowing (4), F
is replaced by a diagonal matrix with diagonal equal to

p
k;

in case of the distance (3), k is replaced by a constant and F
by the identity matrix. The naïve (linear and non-adaptive)
shrinkage makes it easier to appreciate the differences due to
the (nonlinear and adaptive) construction of the PCs.

Fig. 2 presents the results obtained for two images (¾=25).
Due to space limitation, we include here only the reconstruc-
tion from windowed and from foveated PCs, noting that the
reconstruction from PCs computed from (3) was inferior to
both. A close-up inspection reveals that the reconstruction
from foveated PCs features more details and better contrast.
It is also much less affected by the high-frequency striped ar-



noise-free noisy (¾=25) reconstruction from largest 3 windowed PCs reconstruction from largest 3 foveated PCs

PSNR = 20.14 dB PSNR = 27.83 dB PSNR = 28.29 dB

PSNR = 20.14 dB PSNR = 29.11 dB PSNR = 29.40 dB

Fig. 2. Patch-based reconstruction of natural images from the 3 largest principal components learned from clusters of noisy
patches. The reconstruction quality is indicative of how well the PCs are representitive of the patch content.

tefacts typical of dictionaries learned from noisy data. Eigen-
vectors responsible for these artefacts can be spotted in both
the left and the center subfigure on the second row of Fig. 1.
The PSNR results are consistent with these observations.

5. CONCLUSIONS

We have extended the nonlocal foveated self-similarity to the
clustering of patches, thus introducing the foveated PCs as the
eigenvectors of the distance-weighted second-moment matri-
ces of clusters composed of foveated patches. The first few
foveated PCs are shown to be more representative of the patch
content than either the traditional PCs or windowed PCs,
learned from respective clusters of non-foveated patches.

The analysis operates on foveated patches, yet it leads
to better decorrelation of the non-foveated content, with the
foveation operator F effectively acting as a preconditioner for
building the cluster and learning the dictionary.

Ongoing work looks at similarly constructed foveated in-
dependent components, as well as at the adaptive selection of
the most significant foveated components.
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