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ABSTRACT 
A transform-domain fringe pattern denoising technique is presented. The Discrete Cosine Transform (DCT) is applied 
in a sliding window manner to get an overcomplete image expansion, and then the transform coefficients are 
thresholded to reduce the noise. We investigate the proper size of the sliding window and the proper threshold level. 
The latter is determined individually for each window position using a local noise variance estimate. In order to deal 
with a rather inadequate but simplified noise model, a proportionality factor, related with the speckle size, is found by 
experiments with digitally simulated speckle fringes. Such a proportionality factor suggests that the technique could be 
made fully automatic. We demonstrate promising results in denoising of real speckle fringe patterns, obtained through 
an out-of-plane sensitive Digital Speckle Pattern Interferometry (DSPI) set-up in a process of non-destructive testing of 
reinforced composite materials deformation.  
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1. INTRODUCTION 
Digital Speckle Pattern Interferometry (DSPI) is a well developed experimental method for non-destructive quantitative 
and qualitative testing. It offers high degree of accuracy in measuring micro and sub-micro displacements of roughly 
scattering surfaces induced from deformations of the investigated object. Variety of DSPI algorithms and measurement 
configurations has been proposed [1-3]. However, the intrinsic noisy character of the speckle fringe patterns decreases 
the measurements accuracy. For such patterns, the signal to noise ratio is close to unity and the contrast across the 
pattern periphery is poor due to the normally used Gaussian illumination [4].  

In order to reduce the noise and to enhance the contrast of correlation fringe patterns various algorithms have been 
developed. Standard spatial-domain speckle filters, such as median, mean or low-pass filters, Gamma, Frost, and 
geometric filters usually over-smooth or does not suppress the noise efficiently [5, 6]. Recursive techniques could result 
in less oversmoothing for the price of excessive bias [7]. Recently, transform-domain denoising techniques have proven 
superior for a large variety of real images. Several factors are crucial for such techniques, i.e. good localization 
properties of the transforms chosen, high factor of over-completeness of the transform and proper threshold selection. 
Localization is preferable as it ensures different treatment of homogeneous image regions and regions with image 
details [8]. Over-completeness ensures multiple estimates of each pixel thus reducing the border effects arising from the 
local processing. The threshold is depending essentially on the statistical properties of the noise and therefore should be 
elaborated carefully for the image class and noise model under study.  

In DSPI field several attempts to utilize transform-domain denoising have been made, either wavelet [9, 10] or Fourier-
based [11, 12]. The wavelet techniques reported in ref. [10] apply no over-complete transforms and rely on classical 
threshold [13] or even on sub-band removal that is essentially a simple low-pass filtering. The Fourier technique in ref. 



[12] suggests using a visually-adjusted interactive threshold. While it demonstrates preservation of the fine fringe 
structure, it is clearly non-automatic and lacks quantitative basis.  

The aim of this contribution is two-fold. First, it demonstrates the applicability of discrete cosine transform in denoising 
fringe patterns. Second, it gives account on the suitable choice of the window size and threshold level. As obtaining a 
precise noise model is rather difficult we aim at finding a proportionality factor, which would adjust the threshold for a 
simplified model properly. The assessment is done by processing of synthesized speckle patterns where the noise-free 
patterns are known. Real correlation fringes are also processed in order to demonstrate the possibility of having a fully 
automated transform-domain denoising technique.  
 

2. SPECKLE PATTERN FRINGES MODEL  
We adopt a classical optical arrangement to produce speckle patterns generated by rough scattering surface [10], as 
illustrated in Fig. 1.  

 
Fig. 1. Optical set-up for speckle pattern generation: BS - beam splitter; L - lenses; P - pupil stop  

The rough surface is normally illuminated by a coherent Gaussian beam G(ξ, η) via the beam splitter BS. The two 
lenses L are with equal focal lengths f and the diameter of the pupil stop P in the focal plane is d. The amplitudes of the 
electric fields reflected from the rough surface before and after a small deformation are:  
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where r is the average reflectivity of the scattering surface, ϕ(ξ, η) is the random phase uniformly distributed in the 
interval [-π, π] and φ(ξ, η) is the phase change which corresponds to the deformation of the surface. The amplitudes 
before and after the deformation in the observation plane (x, y) can be presented as:  

,     ,                               (2)  

where F and F-1 denotes the right and inverse Fourier transforms respectively, t(u, v) = circ(ρ) is circular low-pass filter 
in the frequency domain with radius ρ which corresponds to the pupil stop P in the experimental set-up [10, 14]. If we 
assume an interferometer with out-of-plane sensitivity and amplitude of the reference beam Ar(x, y) then the interference 
patterns in the observation plane are:  
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The DSPI fringes can be presented as the absolute value of the difference between two speckle intensity fields:  
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To simulate the decorrelation effect, an independent speckle beam can be added to the initial non-deformed state of the 
object [15]:  
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where d(ξ, η) have random values uniformly distributed in the range [0, 1].  

In our simulations, the intensity of the reference beam is chosen twice the average intensity of the object speckle beam 
and the effects of finite pixel size and the pixel quantization are neglected. Then, the average speckle size is defined as 



the ratio between the size of the fringe pattern and the radios ρ [9]. Computer simulations of speckle fringe patterns with 
different average speckle sizes are presented in Fig. 3.  
 

3. DENOISING THROUGH THRESHOLDING IN TRANSFORM DOMAIN  
Classical transform-based methods for additive noise removal are based on the assumption that most of the signal 
energy is compacted to a sparse set of significant transform coefficients while the noise is spread among all coefficients 
thus masking the insignificant ones. Their elimination should give a clean (denoised) signal estimate. The most correct 
way of performing the coefficient elimination is to use probabilistic models of both the information signal and the 
contaminating noise. If such models are too complex or not available, simplified models are adopted together with 
bounds limiting their use [16].  

Consider a signal noise mixture, ryz +=
2σ

, where y is the information signal, r is the contamination, assumed to be a 

zero-mean white noise of variance , i.e. , and z is the observed signal. Without loss of generality, z, y, 
and r could be realizations of 1D or 2D processes measured on discrete grids, i.e. signals of length N or square images 
of size N2. The decomposition of the mixture in a given orthonormal basis  is done through computing the inner 
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and the denoised signal estimate is obtained from  through the inverse transform. The non-linear threshold Γ is 
determined by the assumption of minimum risk. It has been shown that, for additive Gaussian noise model within image 
segment of size N2, the so-called universal threshold can be used [13]:  
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The simple additive white Gaussian noise model is commonly assumed implicitly when denoising techniques are 
applied to experimental data. However, it does not fit to the complex form of noisy fringe patterns described by Eqs. (1-
5). These equations suggest that a more realistic model for the noise in the fringe observation is a mixture of 
multiplicative noises, which essentially has a signal-dependant nature. Moreover, when the object deformation is large 
the noise also presents some decorrelation effects. Parameters of random processes involved in the fringe pattern 
formation are usually difficult to estimate during the measurements. Such parameters depend on the properties of the 
investigated object and from the experimental set-up. This makes the use of an accurate noise model quite difficult. 

A local transform-domain processing would allow achieving a compromise between the ideal noise model and the 
commonly used additive white Gaussian noise model. While the noise is spatially varying on a global scale, we propose 
to model it as constant within the sliding window, assuming a local additive white Gaussian noise model. Thus, 
different thresholds shall be used for different part of the image depending on the local noise variance , where n is the 
index of the current local window. We favor DCT as a local transform. In contrary to wavelets, it is quite robust to 
speckles as fringe patters are captured in few coefficients of large amplitude, while speckles – being point singularities – 
are spread on a large number of low amplitude coefficients. This fact not only suggests that oscillatory transforms are 
better suited to fringe processing, but also hints that short-term correlation in the noise coming from the speckles is 
negligible, making the white noise assumption more realistic. As an oscillatory transform, Fourier transform would be 
also a suitable choice, however DCT is computationally less demanding. DCT is computed in a local window, sliding it 
one pixel at a time. Thus, a highly over-complete decomposition is obtained and multiple estimates of each pixel are 
obtained after thresholding and inverse transform. Their averaging allows compensating the Gibbs-like border 
distortions caused by the local processing [17].  

The local noise variance can be estimated automatically in the DCT domain as the normalized median of the absolute 
value of the high-frequency coefficients:  
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Here, zn denotes the observed signal inside the local window, and H is a subset of high-frequency DCT coefficients 
containing, e.g. 50% of the high-end of the spectrum in a zig-zag scan.  

While adopting the hard-thresholding scheme (6) in transform domain, we tune the universal threshold (7) by a user-
adjustable parameter k in order to cope with the non-adequacy of the white Gaussian noise model:  

2ln2 Nk nn σ=Γ . (9) 

For simplicity, the parameter k in (9) does not depend on the particular window n. Nevertheless, the resulting threshold 
Γn is locally adaptive as it depends on the local estimate of the noise variance. In the next section we present an analysis 
based on experiments that demonstrates the relationship between the optimal choice of k and the speckle size. Thanks to 
this analysis and to the local estimation of the noise, the transform-domain thresholding operation can be made fully 
automatic.  
 

4. EXPERIMENTAL RESULTS  

3.1. Experiments with simulated images  
In order to compare with previous fringe pattern denoising methods, we adopt the following parameters the fidelity 
index f and the speckle index s:  
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where Iij original and Iij are the intensities of the original and the nose image, σij and ijI  are the local standard deviation 
and the local mean over a square 5x5 window respectively. The image fidelity measures how well image details are 
preserved after the filtering procedure. The speckle index s quantifies the local smoothness of the filtered fringe 
patterns. Its lower values indicate higher local smoothness. It can be regarded somehow as an average reciprocal of the 
signal to noise ratio. 

In order to investigate and analyze the performance of the noise-suppression algorithms, we traced the behavior of the 
fidelity parameter f as a function of the tuning parameter k for different speckle sizes and window dimensions. The 
obtained results are presented graphically in Fig. 2. As it can be seen, the curve maxima for different speckle sizes 
follow almost identical behavior for different window dimensions. Subsequently, optimal tuning parameters k can be 
retrieved. So, in this study, we used k equal to 1.05, 0.94 and 1.10 for speckle sizes 1, 2, and 3 respectively. 

   
Fig. 2. The fidelity parameter f for different speckle and window sizes and for varying tuning parameter k. 

From left to right: for windows of 16x16, 32x32, and 64x64 pix.  

Fig. 3 visualizes results of the denoising procedure. The tuning parameter k has been chosen according the above 
comments. As seen, the denoised images are quite satisfying exhibiting clear speckle-free patterns.  



 

   
 

 

   
 

 

    
Fig. 3. Simulated speckle fringe patterns of size 384x384 pix. From top to bottom: average speckle size of 1, 2, and 3 pix. From left 

to right: noisy patterns, denoised with 16x16, 32x32, and 64x64 window sliding DCT. 

In a next experiment, we take into account also the speckle pattern decorrelation effects, as described by Eq. (5). We 
compared our quantitative results with the methods from refs. [10], [12]. These results are summarized in Table 1.  

The authors of [10] have applied wavelet transforms in a non-overlapping manner, i.e. as critically-sampled dyadic 
wavelet transform. Their thresholding scheme includes the universal threshold (i.e. assuming a global white Gaussian 
noise model) or even a linear low-pass filtering, which they call subband removal. While reproducing the wavelet 
experiments, we got worse results than those reported in [10]. This might be due to the slight difference in the 
experimental setting, and in order to be maximally fair we kept their best results. In any case our DCT-based technique 
performs considerably better due to the oscillating nature of the cosine basis functions, the local and over-complete 
processing and the properly tuned threshold.  

Short-time Fourier transform, computed in a local, weighted and sliding manner is another choice of localizing 
transform. In the work [12], it is suggested that the Fourier-domain threshold should be controlled qualitatively 
(visually) and chosen in an ‘interactive’ manner. No assumptions about the noise model are made. While making 
simulations, we specified the window size and threshold as suggested in [12] and the results are given in the table. 
However, we believe that there is much better setting for this type of local Fourier-domain filtering. Such setting 
requires further research and we are working on it. A clear advantage of DCT vs. Fourier transform is that it is real-
valued and therefore has been widely used in many image processing applications. Many specialized signal processors 
and integrated circuits performing fast DCT exist and can be used in real-time systems.  

 



Table 1. Denoising results of different transform methods  

Filter Speckle 
Size 

Fidelity f Speckle 
Index s 

Fidelity 
f 

Speckle 
Index s 

Filter Fidelity 
f 

Speckle 
Index s 

Fidelity 
f 

Speckle 
Index s 

Decorrelation Without  With   Without  With  
1 0.985 0.20 0.947 0.13 0.92 0.14 
2 0.974 0.18 0.918 0.12   

SDCT 
16x16 

3 0.916 0.16 0.825 0.10 

Subband 
removal 

  

Wavelet basis: 
Simmlet 8 

1 0.988 0.19 0.969 0.13 0.92 0.13 
2 0.984 0.20 0.954 0.13   

SDCT 
32x32 

3 0.931 0.16 0.886 0.10 

Subband 
removal 

  

Wavelet basis: 
Daubechies 10 

1 0.989 0.19 0.970 0.13 0.981 0.30 0.882 0.09 
2 0.985 0.19 0.954 0.12 0.960 0.26 0.838 0.12 

SDCT 
64x64 

3 0.929 0.15 0.885 0.16 

Windowed 
Fourier 
32x32 0.800 0.22 0.667 0.21 

3.2. Experiment with real images 
The proposed noise suppression approach has been applied to experimentally obtained speckle fringe patterns. The 
optical arrangement is a digital speckle-pattern interferometer with out-of-plane sensitivity. Two different objects have 
been investigated. The first one is a metal plate exposed to a thermal loading (Fig. 4). CCD camera with a matrix of 
753x242 pix is used, and the average speckle size in this case is approximately 1.5 pix.  
 

          
 

Fig. 4. Speckle fringe pattern obtained during thermal loading of a metal plate: the original and the filtered fringe pattern by means of 
an adaptive threshold SDCT filter with a window size 128x128 pix  

 
The second object is a hollow cylindrical vessel made of fiber reinforced composite material. It is subjected to a high 
pressure loading which leads to its rapid deformations. The cylindrical shape of the object results in a nonuniform 
intensity distribution in the image plane. Another peculiarity of the experimental setup is the use of a speckled reference 
beam. This significantly simplifies the optical arrangement but also decreases the fringe pattern quality. The CCD 
camera matrix is with 1024x1024 pix and the frame capture rate is 30 fps. A fringe pattern acquired in the process of 
investigation is filtered and shown on Fig. 5.  

 

                                            
Fig. 5. Speckle fringe pattern obtained in the process of mechanical loading of a composite vessel: the original and the filtered fringe 

pattern by means of an adaptive threshold SDCT filter with a window size 128 x 128 pix  



As could be seen, the denoised experimental fringe patterns are of high quality, the dense fringes are clearly 
distinguishable and not blurred. Such fringes can be further processed by means of simple tracing algorithms. 

 
CONCLUSIONS  

In this paper, we have studied a DCT-based denoising technique aimed at reducing speckle noise in DSPI fringe 
patterns. Properties such as over-completeness and local behavior were taken into account, discussed and properly 
utilized. These properties allow using a rather simplified noise model and an optimally-tuned threshold. Results 
obtained from simulated noisy patterns suggest an automated implementation of the technique. Denoising of real 
speckle fringe patterns have yielded nice-looking speckle-free images better suited for further processing (e.g. phase 
retrieval).  
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