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Abstract—Due to environmental and economic constraints
inherent to seismic exploration, there are often missing shotpoints
and receivers that degrade the resolution of the final seismic
image. Hence sophisticated interpolation techniques are required
for the recovery of dense and uniform spatial sampling. Recent
approaches improve the interpolation by adopting robust models
through denoisers. We introduce a 3D shot gather interpolation
method that jointly considers a sparse prior and a regularization
induced by a multichannel volumetric denoiser. The proposed
volumetric regularization uses collaborative filters that perform
denoising through transform-domain shrinkage of a group of
similar seismic cubes extracted from a land seismic acquisition.
This grouping and collaborative filtering paradigm exploit the
local correlation present in each cube and the non-local cor-
relation between different cubes. Experiments on the Stratton
3D survey show that the proposed method can interpolate 3D
shot gathers in an orthogonal seismic recording from a swath
geometry, outperforming methods based on 2D denoisers and
5D seismic data reconstruction in terms of root mean square
error and in the recovery of seismic reflections.

Index Terms—Shot data reconstruction, BM4D, seismic acqui-
sition, denoiser prior, plug and play denoiser, swath geometry.

I. INTRODUCTION

REGULAR sampling plays an important role in seismic

data processing and impacts the imaging quality and

interpretation of hydrocarbon exploration. Nevertheless, the

sampled seismic data is often incomplete or irregular due to

environmental, topographic, or social constraints [1]. There-

fore, the missing information must be recovered or interpolated

to obtain the regular seismic data. Several reconstruction

algorithms are designed for receiver [2], [3] and shot gather

recovery [4]–[6] under the assumption that seismic data en-

joys an approximate sparse representation with respect to a

particular transform or dictionary, such as curvelets, seislets,

and atom waves [7]. The reconstruction is further impaired

by the random and seismic ambient noise of the acquisition

[1], [8]. To improve the interpolation of the seismic data,

[9] complements the sparse representation with an implicit
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data prior implemented as a denoising algorithm under the

consensus equilibrium framework [10].

All the above methods for shot gather interpolation have

been applied on geometries with a line of shotpoints and a

line of receivers, such as the cross-spread, split-spread, and

full-spread geometries [5]. In particular, the cross-spread is

often used for shot gather interpolation experiments, where the

information can be analyzed with high correlation and where

sparsity is satisfied [4], [9]. However, Land 3-D acquisition

commonly is carried out by swath shooting [11]–[13] in which

receiver cables are laid out in parallel lines and shots are

positioned in a perpendicular direction [14], and all geophones

simultaneously record the elastic energy emitted by a source

[15] resulting in a 3D shot gather. Therefore, in this case,

previous 2D shot gather interpolation methods cannot account

for the 3D structure of the acquired seismic waveform in a

missing shot gather. Even though higher dimensional methods

exist [3], [16], [17], these have thus far been considered for

interpolating missing receivers and not for the interpolation of

full 3D shot gathers.

We introduce a 3D shot gather interpolation method that

employs a multidimensional regularization model through a

volumetric denoiser. Specifically, the denoiser employs the

grouping and collaborative filtering paradigm where similar

3D seismic cubes are stacked in a 4D tensor and jointly filtered

in a transform domain. This transformation exploits the local

correlation present in each cube and the non-local correlation

between different cubes leading to an improved separation

of signal and noise that cannot be attained by 2D denoisers.

We explore the proposed method in a realistic swath seismic

acquisition survey where we further leverage the similarity of

multiple channels (3D shot gathers) to perform the grouping

of the seismic cubes. Numerical results show the improvement

in speed and accuracy when compared with interpolation

methods that employ 2D denoisers as a regularizer (BM3D–

CE) and the 5D interpolation (5D–DRR) using the optimally

damped rank–reduction method [17].

II. ACQUISITION MODEL USING SWATH GEOMETRY

A cross–spread configuration consists of a shot line orthog-

onally intercepted by a receiver line Figure 1(a), resulting in

a 3D seismic survey as shown in Figure 1(b) composed by

M stacked 2D shot gathers. However, in practice, the seismic

acquisition is performing juxtaposition of cross–spreads [15].

Hence, recording the seismic signal for a shot employs several

lines of receivers simultaneously in a multi–orthogonal seis-

mic acquisition called swath geometry [12], as illustrated in
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Fig. 1. (a) Cross–spread [4], [9] and (c) swath geometry [12]. (b) and (d) are the 3D and 4D tensor representation for the subsampled acquisitions from (a)
and (c) respectively by removing the shotpoints at 2 and M−1.

Figure 1(c). Therefore, in this case, the seismic data can be

represented as 4–D structures comprising L samples in time

of the reflected energy emitted by M shot gathers, captured

by a sequence of K receiver lines with N receivers per line.

Here, a single shot gather is recorded by an L×N ×K array

as shown Figure 1(d). Additionally, swath geometry preserves

the advantages of a cross–spread and provides seismic signals

with less random noise [4].

The acquisition process illustrated in Figure 1(c) can be

modeled as a system of linear equations given by

y = ΦΦΦx+ωωω, (1)

where ΦΦΦ ∈ RLNK(M−k)×LNKM being the acquisition opera-

tor, x ∈ RLNKM is the vector representation of the M 3D

shot gathers in Figure 1(d) and ωωω accounts for the acquisition

noise. ΦΦΦ ∈ RLNK(M−k)×LNKM is defined as Φ = S⊗ILNK ,

where ⊗ represents the Kronecker product [18], ILNK is

a LNK × LNK identity matrix, S ∈ RM−k×M model the

shot subsampling effect and is obtained by removing from the

identity matrix IM , k rows corresponding to the k missing

shot gathers. The acquired shot gathers y are then used to

estimate the whole data set x.

III. VOLUMETRIC SHOT GATHER INTERPOLATION

For the estimation, the traditional CS formulation exploits

the sparse representation of x on a given transform basis

D ∈ RLNKM×LNKM such as wavelets or curvelets [19], with

the estimate x̂ of x defined as the solution of

x̂ = argmin
x

1
2 ||y −ΦΦΦx||22 + λ||Dx||1 , (2)

where the parameter λ > 0 balances the quadratic fidelity

versus the ℓ1 sparsity penalty.

Although the sparsity promoted with the ℓ1-norm has been

widely used in seismic applications [4], [5], a recent work

[9] explored combining sparsity and Plug and Play (PnP)

priors to improve the reconstruction. PnP priors have been

studied as a mechanism for incorporating image denoisers as

implicit regularizations for inverse problems [20], [21]. The

interpolated seismic data in [9] is the solution to the following

optimization problem

x̂ =argmin
x

1
2 ||y −ΦΦΦx||22 + λ||Dx||1 + βh(x) , (3)

where λ and β are regularization parameters and h is the

implicit PnP regularization function defined by the Block-

Matching and 3D filtering (BM3D) denoiser. However, since

BM3D is a 2D denoiser, the regularization defined by BM3D

is applied through 2D dimensional structures of the seismic

data cube and therefore, as a PnP prior, it cannot take full

advantage of the higher dimensional structure of the seismic

waveform (i.e. the multiples cubes in Figure 1(d) correspond

to a 4D tensor acquired in a swath acquisition geometry).

Here, we propose to interpolate missing shot gathers of the

target (pre–plot) swath geometry in land seismic acquisitions

using (3) and the volumetric multichannel BM4D denoiser

[22], [23] as PnP prior instead of BM3D. Similar to [9], we

address (3) using the Consensus Equilibrium (CE) approach

[10], [24] that solves a generalized inverse problem that

includes multiple data fitting and regularization terms. Within

CE, we use BM4D iteratively on an auxiliary variable vk to

pull the current estimate x̂k toward a solution x̂ with improved

regularity of similar seismic structures along the M 3D shot

gathers. In the following, we present in detail the multichannel

denoising algorithm in the context of multiple receiver lines

acquisition.

A. Collaborative filtering of volumetric multichannel data

1) Noise model: The input vk of the denoiser is multi-

channel volumetric (i.e. 4D) data structured as in Figure 1(d).

Specifically, we model vk as a noisy realization of x

vk = x+ nk, nk (·) ∼ N
(

0, σ2
k

)

, (4)

where nk is zero–mean i.i.d. Gaussian noise with variance σ2
k
.

The goal of the filtering is then to estimate x from vk.

2) Multichannel BM4D filtering: The land seismic acquisi-

tion is performed by a swath shooting sequence over a multi–

orthogonal geometry, which consists of all receivers that are

actively recording for a given shot point [15]. Due to the

parallel nature of receiver lines within a swath geometry, shot

gathers capture waveform shapes and seismic signal structures

that repeat in the majority of the records such as reflection

hyperbolas, ground roll waves (surface waves), and refrac-

tion (linear events). Therefore, there are similar structures

between the different seismic shots, which are exploited to

use algorithms that can find those areas of high similarities,

such as BM4D. We adopt directly the BM4D implementation
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of [23] applied as a multichannel denoiser across principal

components computed across the shot gathers, extending the

2D multichannel approach of [25] to 4D data.

We begin the denoising by computing the principal com-

ponents (PC) across the M 3D shot gathers that form vk,

resulting in M 3D PCs, which we regard as the channels for

BM4D denoising. BM4D processes the data in groups of small

4×4×4 cubes extracted from the individual channels according

to the following scheme.

The first PC has the highest signal–to–noise ratio among the

PCs and vk. Hence, we select this channel to evaluate cube-

matching, identifying volumetric positions of similar cubes.

Then, individually for each channel, we build groups of similar

cubes collected from the positions indicated by the cube-

matching, as illustrated in Figure 2. Each group of cubes is

organized into a 4D structure by stacking the cubes along a

nonlocal 4th dimension. As the common broader structures

persist across the channels, also the groups built for channels

other than the first one enjoy high internal self-similarity.

We transform each group of cubes, obtaining 4D spectra in

which the underlying regular structures are extremely sparsely

represented because of self-similarity between the grouped

cubes. Due to this sparsity, by shrinkage of the 4D spectra,

we attenuate the noise while preserving most of the underlying

signal and enhancing both local and non-local regularity across

the multiple channels.

After shrinkage, the 4D group transform is inverted, and

each resulting cube estimate is aggregated into the correspond-

ing channel at its original position. In this way, we form a

denoised estimate of the M channels.

Finally, the inverse PCA with respect to the M channels

returns a denoised estimate of the M 3D shot gathers.

Note that the above denoising procedure operates across five

dimensions, decorrelating the 4D data (as shown in Figure 1d)

through a data–driven 5D highly redundant transform resulting

from PCA and groupwise 4D transforms. The extra dimension

corresponds to the nonlocal dimension along which we encode

the similarity of grouped blocks.
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Fig. 2. Illustration of multichannel BM4D cube-matching for different PCs
of vk , showing the matching of three cubes. The cube-matching is performed
only on the first PC; the resulting cube positions are then repeated across
every component 1, . . . ,M to form the corresponding groups of cubes.

TABLE I
RMSE SUMMARY FOR THE MISSING 3D SHOT GATHERS 4, 6, AND 9
INTERPOLATED BY THE PROPOSED METHOD, BM3D–CE [9], AND

5D–DRR [17].

Shot index Proposed BM3D–CE 5D–DRR

4 0.005 ± 0.001 0.035 ± 0.005 0.172 ± 0.007
6 0.004 ± 0.002 0.026 ± 0.007 0.194 ± 0.013
9 0.005 ± 0.001 0.043 ± 0.008 0.203 ± 0.019

{4, 6, 9} 0.0046 ± 0.0015 0.0346 ± 0.006 0.1896 ± 0.0130

Run time 1330 s 6600 s 2600 s

IV. SIMULATIONS AND RESULTS

The experiments to evaluate the proposed volumetric de-

noising regularization for shot gather interpolation were per-

formed using the Stratton 3D survey [26], specifically using a

Swath corresponding to source line 556. The data acquisition

consists of a multi–orthogonal land seismic survey in the south

of Texas. The swath acquisition parameters are: M=10 3D

shot gathers, K=6 receiver lines with N=112 receivers and

L=500 time samples. We simulate k=3 missing shotpoints

at positions 4, 6, 9 and initialize the missing shot gathers as

zero. We used the 3D wavelet transform symlet–8 as dictionary

D for the sparse representation used in (3). The 3D wavelet

transform is applied in the receiver line direction, where for

each receiver line, cubes of dimension L × N × M are

configured. Our results were compared with those obtained

by the competitive BM3D–CE [9] and 5D–DRR [17] methods.

The root–mean–square error (RMSE) is used as the objective

metric to assess the accuracy of the interpolated 3D shot gath-

ers. The method’s parameters are tuned in order to minimize

the RMSE; in particular, for the proposed method we tuned

the noise variance assumed by BM4D (σk, fixed for all k for

simplicity) and the regularization parameters in (3) (λ, β) via

the grid search tool from [27], obtaining values σk = 10−5,

β = 8 · 10−3, and λ = 10−4. For 5D-DRR the missing data

was initialized with a spline interpolation. Furthermore, fol-

lowing [17], we used the denoising and interpolation mode of

5D–DRR with rank= 24 to account for the nonlinear seismic

events.

Fig. 3. 3D Absolute differences between the original shot gather 4 and those
interpolated by the proposed, BM3D-CE and 5D-DRR methods. Note that the
slices are at 1000 ms, receiver 40, and receiver line 3, respectively.

Table I summarizes the interpolation results of the missing

3D shots gathers 4, 6, and 9 in terms of average RMSE over
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Fig. 4. Comparison of the interpolated 3D shot gather 4 using the slices at time 1000 ms, receiver 40, and receiver line 3. The white box highlights the
ground roll accurately reconstructed by the proposed method. The upper box shows the first arrivals omitted by the BM3D–CE method.

the 6 receiver lines within each single interpolated 3D shot

gather, as well as over all 18 receiver slices in the three 3D

shot gathers, along with the corresponding standard deviation.

The proposed method shows a better performance in all

interpolated 3D shot gathers. We also report the corresponding

run times on a AMD Ryzen 7 5800X3D CPU on a single

core and 128 GB RAM. The proposed method is highly

efficient, also thanks to the PCA which allows to alleviate the

computational burden of the cube–matching, evaluated only

once on the first PC, instead of performing it separately on

each channel. The low errors are visualized in Figure 3, where

the proposed method presents localized high errors near the

linear events of the first arrivals primarily due to slight changes

in the reconstructed amplitude, in contrast to the BM3D–CE

method that concentrates its highest errors in the central part

of the shot gather due to poor reconstruction of the ground

roll in both amplitude and shape pointed with the arrows.

Figure 4 provides a visual comparison of the 3D shot gather

4 interpolated by the different methods. This visual inspection

confirms the results in the table, and it can be observed that

BM3D–CE fails to interpolate internal seismic structures such

as linear events related to the first arrivals and that 5D–

DRR recovers the structures, but is highly contaminated with

noise. Overall, our method provides a better reconstruction

of seismic amplitudes and a smoother lateral continuity for

seismic events including coherent noise. We evaluated the

reconstruction quality of the different methods by extracting

receiver 40 from shot gather 4 of the receiver line 3, as

illustrated in Figure 5. The analysis window ranges from 1240

ms to 1400 ms, and it is evident that the proposed method

provides accurate alignment with all measurement points,

especially in regions with high curvature. In contrast, the

BM3D–CE method exhibited incorrect amplitude estimation

of the waveform in these areas.

We finally note that, as reported by [9], the sparsity prior

helps in the recovery of the low–frequency components of

the shot gathers and the estimation with only the denoising

regularization (i.e. λ = 0) also leads to inferior results due
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to the complexity of shapes related with nonlinear seismic

events. As already commented, the PCA is beneficial for

improving the matching and thus the sparsity, as well as for

decreasing complexity; in particular, if each shot gather had

been processed independently by (single–channel) BM4D, the

RMSE and run–time would approximately increase by 20%

and by 50%, respectively.
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Fig. 5. Detailed waveform between 1240 and 1400 ms located on receiver 40,
shot gather 4, receiver line 3. The proposed method achieves the best fitting,
especially in areas with higher curvature.

V. CONCLUSION

This paper proposes to employ a volumetric denoising

regularizer and sparsity prior to 3D shot gather interpolation

sampled simultaneously in several receiver lines. Because

reflections always occur over a finite set of reflectors at

depth and some seismic characteristics are repeated in the

swath seismic acquisition, the proposed method exploits mul-

tichannel collaborative filtering of similar seismic volumes to

improve the interpolation of typical 3D events. Experiment

results on Stratton 3D survey dataset showed the advantages

of the proposed approach compared with leading competitive

methods in a scenario of 3D missing shots. Particularly, our

approach provides lower RMSE and superior quality in the

recovery of both linear and nonlinear seismic events, and with

less computational time.
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[11] Ö. Yilmaz, Seismic Data Analysis. Society of Ex-
ploration Geophysicists, jan 2001. [Online]. Available:
https://library.seg.org/doi/book/10.1190/1.9781560801580

[12] Y. Wang and Z. Yang, “Application effects of swath 3D geometry in the
foothill regions of western China,” J. Seismic Exploration, vol. 28, pp.
347–361, 2019.

[13] A. Cordsen, M. Galbraith, and J. Peirce, Planning Land 3-D Seismic

Surveys. Society of Exploration Geophysicists, 2000.
[14] C. L. Liner, “Chapter 10: Land Shooting Geometry,”

in Elements of 3D Seismology. Society of Exploration
Geophysicists, jan 2016, pp. 111–122. [Online]. Available:
https://library.seg.org/doi/10.1190/1.9781560803386.ch10

[15] A. Chaouch and J. L. Mari, “3-D Land Seismic Surveys: Definition of
Geophysical Parameter,” Oil & Gas Science and Technology - Revue de

l’IFP, vol. 61, pp. 611–630, 2006.
[16] L. Zhang, A. Li, J. Yang, S. Li, Y. Yao, F. Xiao, and Y. Huang, “Five-

dimensional interpolation in the OVT domain for wide-azimuth seismic
data,” J. Geophysics and Engineering, vol. 18, pp. 529–538, 2021.

[17] Y. Chen, M. Bai, Z. Guan, Q. Zhang, M. Zhang, and H. Wang, “Five-
dimensional seismic data reconstruction using the optimally damped
rank-reduction method,” Geophysical Journal International, vol. 222,
pp. 1824–1845, 2020.

[18] H. Zhang and F. Ding, “On the Kronecker products and their applica-
tions,” Journal of Applied Mathematics, vol. 2013, pp. 1–8, 2013.

[19] F. J. Herrmann, M. P. Friedlander, and Ö. Yilmaz, “Fighting the curse of
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