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ABSTRACT
We present a new transform-based method for adaptive de-
noising. It is assumed that the observations are given by
a broad class of models with a signal-dependent variance.
Denoising is performed by coefÞcient shrinkage in local
block-transform domain. The intersection of conÞdence in-
tervals (ICI) rule is used in order to determine the spatially-
adaptive size of the block transforms. It enables both a sim-
pler modelling of the noise in the transform domain and a
sparser decomposition of the signal. Consequently, coefÞ-
cient shrinkage is very effective and the reconstructed esti-
mate�s quality is high. Experiments with simulated as well
as with real data demonstrate the advanced performance
of the proposed algorithm.

1. INTRODUCTION ANDMOTIVATION

In many applications the observed signal is corrupted by
a signal-dependent noise. The most widely encountered
models are Poisson, Þlm-grain, multiplicative and speckle
noise. Their common feature is that the variance of the
noise is directly related to the true-signal�s intensity. Start-
ing with the classical Þlters by Lee and Kuan, a number
of adaptive approaches to this sort of observations have
been developed and proposed (e.g. [5], [11], [12], [13],
[9], [8], [2]). The predominantly signal-dependent nature
of the noise of modern digital imaging sensors makes such
algorithms of fundamental importance even for consumer
applications.
In this paper we propose a new transform-based de-

noising technique for a broad class of signal-dependent
noise observations. It is based on Þltering in local block-
transform domain, where the size of the block is adaptively
selected. The use of an adaptive-size block allows a sim-
pler and more direct noise modelling in the transform do-
main, which enables the correct use of standard coefÞcient
shrinkage techniques (e.g. hard-thresholding, Wiener Þl-
tering). At the same time, an adaptive-size block improves
the sparsity of the signal representation in the transform
domain, further facilitating the denoising. It results in a
simple yet very effective denoising algorithm.
As a particular case, we consider the two-dimensional

image denoising problem. However, our approach is rather
general and can be utilized for data of arbitrary dimensions.
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The presented method can be considered as an im-
provement and generalization of the technique [10] (devel-
oped for standard additive Gaussian noise) to the following
very general signal-dependent noise observation model.

1.1 Signal-dependent noise model

We consider observations z(x), x ∈ X ⊂ Z2, with the ex-
pectations E{z(x)} = y(x) ≥ 0, where the errors (noise)
η(x) = z (x)− y (x) are independent and the variance of
these observations is modeled as

σ 2z (x)= var{z(x)} = var{η(x)} = ρ(y(x)), (1)
ρ being a given positive function of y called the variance
function. For example, ρ(y) = y, ρ(y) = y2, and ρ(y) =
(Kyα)2 for the Poisson, gamma, and Þlm-grain observation
models, respectively.
The problem is to reconstruct the true image y from the

noisy observations z.

1.2 Filtering in transform-domain

Orthonormal transforms are commonly used in conjuc-
tion with a shrinkage operator (e.g. hard-thresholding or
Wiener Þltering) which attenuates the noisy transform co-
efÞcients depending on their magnitude and standard devi-
ation. When considering the conventional additive white
Gaussian noise model, ρ(y) ≡ σ 2, there are no particu-
lar complications because, due to the orthonormality of the
transform, each coefÞcient has variance σ 2.
On the contrary, when ρ(y) is not constant, the variance

of each coefÞcient needs to be estimated separately, signif-
icantly increasing the complexity of the overall approach.
On the other hand, performing coefÞcient shrinkage impos-
ing a constant variance for the noisy coefÞcients can lead
to a consistent degradation of the restoration accuracy.

2. SPATIALLY-ADAPTIVE BLOCK-SIZE

The typically encountered variance functions ρ, such as
those mentioned in Section 1.1, are smooth functions of
their argument y. As a consequence, on a local neighbor-
hood where the signal is nearly constant, so is its variance.
It means that with a good approximation, the variance can
be assumed as constant if the transform�s support is re-
stricted to a region of signal uniformity.
In our approach we rely on the LPA-ICI technique [7]

to identify adaptive neighborhoods where the signal can be



assumed to be locally constant. Such neighborhoods are
found by comparing pointwise estimates of the signal cal-
culated over an enlarging family of nested neighborhoods.
For a Þxed point x , the ICI (intersection of conÞdence inter-
vals) criterion [6, 4] is implemented in the following way.
Given a set of pointwise LPA (local polynomial approxi-
mation) estimates

!
ŷLPABj (x)

"J
j=1 calculated on a nested se-

quence {B1 ⊂ ·· · ⊂ BJ } of neighborhoods of x , we deter-
mine a sequence of conÞdence intervals

D j =
#
ŷLPABj (x)−(σ ŷLPAB j (x) , ŷ

LPA
Bj (x)+(σ ŷLPAB j (x)

$
,

where ( > 0 is a threshold parameter and σ ŷLPAB j (x)
is the

standard-deviation of ŷLPABj (x). The ICI rule can be stated as
follows: Consider the intersection of conÞdence intervals
I j =% j

i=1Di and let j+ be the largest of the indexes j for
which I j is non-empty, I j+ ,=∅ and I j++1 =∅. Then the
adaptive neighborhood B+x of x is deÞned as B+x = Bj+ .
In particular, we exploit the zero-order local polyno-

mial model, using uniform weighting over nested square
blocks

!
Bj
"J
j=1. It means that the estimate ŷ

LPA
Bj (x) and its

standard deviation σ ŷLPAB j (x)
are calculated as

ŷLPABj (x)=
1&&Bj&&'v∈B jz(v) and σŷLPABj (x)

= 1&&Bj&&
('
v∈B j

σ2z (v),

where
&&Bj && denotes the size (cardinality) of Bj . In this way,

the LPA estimate ŷLPABj (x) is simply the mean of the signal
over Bj , and � up to a factor

)|Bj | � it coincides with
the DC coefÞcient of a DCT or DFT transform or with the
coarsest approximation coefÞcient of a full wavelet decom-
position (with the transforms supported on Bj ).
Roughly speaking, the adaptive B+x selected by the ICI

is the largest neighborhood of x which is compatible with
the data contained within all smaller neighborhoods. In
practice, this means that signiÞcant details of the image
are not oversmoothed by the LPA estimate. At the same
time, because of the zero-order (local constant) polynomial
model, it means that y is nearly constant within B+x . It en-
ables the hypothesis of constant variance within the adap-
tive B+x . This signiÞcantly simpliÞes the shrinkage, as the
constant variance on B+x does not require the calculation of
the variance of the individual transform coefÞcients. More-
over, because of the absence of singularities within B+x the
data enjoy a sparse representation in the transform domain,
signiÞcantly improving the effectiveness of shrinkage.
Further simpliÞcation can be achieved by approxi-

mating σ 2
ŷLPAB j (x)

= 1
|Bj |2

*
v∈Bj σ

2
z (v) as

1|Bj |ρ
+&&ŷLPABj (x)&&,.

Observe that for the Poissonian noise model (where the
variance depends linearly on the signal), this approxima-
tion becomes accurate.
Let us remark that all the formulas and considerations

in the present and in the previous section assume accurate
knowledge of the variance σ 2z of the observations. This is
of course an idealistic assumption, and in all cases where
the variance function ρ is invertible (e.g. for the speckle,

Þlm-grain, or Poissonian case), exact knowledge of the
variance is equivalent to knowing the signal intensity itself.
It is common practice to estimate the variance through

the variance function on the noisy data as σ̂ 2z = ρ (|z|). In
most situations this proves to be a good-enough approxi-
mation. However, when the signal-to-noise ratio is partic-
ularly low, such direct relation can be rather erroneous and
recursive variance update procedures can be exploited in
order to iteratively reÞne the estimate of the variance (e.g.
similarly to [2]).

3. ALGORITHM

Our denoising approach is based on sliding window
transform-domain Þltering with adaptive size for the trans-
form�s support. The LPA-ICI is used to deÞne the size of
the support. Any orthonormal transform which provides
a coefÞcient corresponding to the mean value of the data
over its support (i.e. a DC coefÞcient) can be directly used
in the following algorithm. Let us observe that the near to-
tality (including the DCT, the DFT/FFT, and wavelets) of
transforms used for image processing applications satisfy
this requirement.
The overall algorithm comprises two major parts. The

Þrst part (steps I, II, and III) is based on hard-thresholding.
The second part (steps IV and V) is based on empirical
Wiener Þltering, using the hard-thresholding estimate ob-
tained after step III as a reference estimate. Although the
second part is optional, it can be very beneÞcial to the esti-
mates quality.
(I) LPA-ICI ADAPTIVE BLOCK-SIZES
For a Þxed j , all the estimates ŷLPABj (x) ∀x ∈ X are si-

multaneously calculated as the convolution ŷLPABj = z~1Bj ,
where 1Bj is a uniform kernel equal to h

−2
j on a square sup-

port of size hj × hj . The variance of ŷLPABj (x) is estimated
as σ 2ŷLPAB j (x)

= 1|Bj |ρ
+&&ŷLPABj (x)&&,.

This procedure is repeated for a set H =
{h1 < · · ·< hJ } of increasing hj and with nested supports
of the kernels 1Bj , j = 1, . . . , J . Using established
terminology, such hj�s are called scales, and H is thus the
set of scales.
Given the estimates

!
ŷLPABj (x)

"J
j=1 and their variances-

σ 2ŷLPAB j (x)

.J
j=1, the ICI selects for every x ∈ X the point-

wise adaptive-size block B+x (of size hj+ × hj+), as de-
scribed in Section 2.
(II) TRANSFORM-DOMAIN HARD-THRESHOLDING
For every x ∈ X , the transform is calculated on the

adaptive-size block B+x . We denote the corresponding
transform coefÞcients as ϕz,B+x (i), i = 1, . . . ,

&&B+x &&, with
ϕz,B+x (1) being the DC coefÞcient.
The variance of z on the adaptive block, de-

noted as σ 2z+B+x ,, is assumed constant and equal to

ρ
/&&ϕz,B+x (1)&&/0&&B+x &&1. Thus, the standard-deviation of



each transform coefÞcient is simply σz+B+x , and hard-
thresholding is performed in the form

ϕ̂ y,B+x (i)=
2
0 if

&&ϕz,B+x (i)&&<τσz+B+x , and i>1
ϕz,B+x (i) if

&&ϕz,B+x (i)&&≥τσz+B+x , or i=1 ,

where τ = γ
0
2ln
&&B+x &&+1 is a size-dependent threshold

parameter which is essentially the so-called �universal�
threshold. The factor γ is a Þxed constant, invariant with
respect to the block-size. Only AC coefÞcients are thresh-
olded, hence the DC is always preserved.
Inverse transformation of the hard-thresholded coefÞ-

cients ϕ̂y,B+x yields a local estimate of the signal ŷ
TRA
B+x

:
B+x →R deÞned on the adaptive-size block B+x .
In what follows, we make use of the total variance of

this local estimate. Because of the orthonormality of the
transform, such average variance can be calculated as the
sum of the variances of all non-thresholded coefÞcients.
Therefore σ 2

ŷTRA
B+x

= σ 2z+B+x ,Nϕx , where Nϕx stands for the
number of non-zero coefÞcients after thresholding (i.e. the
number of basis functions used for reconstruction).
(III) AVERAGING WITH ADAPTIVE WEIGHTS
For each x ∈ X , a local estimate ŷTRAB+x supported on an

adaptive-size block B+x has been obtained from the previ-
ous steps. It should be observed that usually blocks cor-
responding to adjacent pixels overlap. This overlap cor-
responds to the overcompleteness of our approach and re-
quires that, in order to obtain an estimate ŷ : X → R for
the whole image, some averaging or fusing of all the many
local estimates is performed. How this averaging is done
can have a dramatic impact on the quality of the Þnal esti-
mate. We use the following convex combination with adap-
tive weightswx which depend on the variance as well as on
the size of the reconstructed local estimates:

ŷ =
*
x∈X wx ŷTRAB+x*
x∈X wxχ B+x

, wx = 1
σ 2
ŷTRA
B+x

&&B+x && , (2)

where χ B+x is the characteristic function of B
+
x . In (2) we

implicitly assume that the local estimates ŷTRAB+x are zero-
padded outside their domain B+x . The weights wx have
this form because the total variance σ 2ŷTRA

B+x
is obviously

an upper bound for the pointwise residual-noise variance
of the local estimate ŷTRAB+x (such pointwise variance is not
necessarily uniform over B+x ), while the extra factor

&&B+x &&
addresses the correlation that exists between overlapping
blocks (the number of overlapping blocks is loosely propor-
tional to their size). Qualitatively speaking, these weights
favour estimates which correspond to sparser representa-
tions (fewer coefÞcients survived thresholding, and thus
lower variance) and at the same time avoid that estimates
with a small support (thus representing image details) are
oversmoothed by other overlapping estimates which have a
large support (which usually are strongly correlated among
themselves and outnumber estimates of a smaller support).

The estimate ŷ : X→ R obtained from (2) can already
be considered as a satisfactory estimate of the unknown sig-
nal y. Alternatevely, it can be used as a reference estimate
for the second part of the algorithm, providing a further
improvement in the restoration performance.
(IV) TRANSFORM-DOMAIN WIENER-FILTERING
For every x ∈ X , the transform is calculated on the

adaptive-size block B+x for the noisy data z as well as for
the reference estimate ŷ. We denote the corresponding
transform coefÞcients as ϕz,B+x and ϕ ŷ,B+x , respectively.
The Wiener Þlter in transform-domain can be given as

ϕ̂Wy,B+x
(i)=

ϕ2ŷ,B+x
(i)

ϕ2ŷ,B+x
(i)+σ 2z+B+x ,

ϕz,B+x (i) , i = 1, . . . , &&B+x && ,
where σ 2z+B+x , is the variance of the observations within B+x
(assumed as constant), which is calculated as σ 2z+B+x , =
ρ
/&&ϕ ŷ,B+x (1)&&/0&&B+x &&1, ϕ ŷ,B+x (1) being the DC coefÞ-
cient of the transform of ŷ on B+x .
The local Wiener estimate ŷTRA-WB+x

: B+x → R is ob-
tained by inverse transformation of the attenuated coefÞ-
cients ϕ̂Wy,B+x . The variance of this local estimate is com-
puted as

σ 2ŷTRA-W
B+x

= σ 2z+B+x ,
|B+x |'
i=1

3 ϕ2ŷ,B+x
(i)

ϕ2ŷ,B+x
(i)+σ 2z+B+x ,

42
.

(V) AVERAGING WITH ADAPTIVE WEIGHTS
Averaging of the local estimates ŷTRA-WB+x

is done anal-
ogously to step (III), using adaptive weights wx =+
σ 2
ŷTRA-W
B+x

&&B+x &&,−1, yielding the Þnal estimate ŷW : X→R.

The above algorithm can be implemented in recursive
mode, progressively improving the initial estimate of the
variance. However, in our experiments we found no con-
crete advantage in doing so. Therefore, for the experiments
presented in the next section, we followed the above Þve
steps only once, exactly as described here, and the results
are given for the Þnal estimate ŷW from step (V).

4. EXPERIMENTAL RESULTS

We show experimental results for three common types of
signal-dependent noise: the �scaled� Poisson noise, z ∼
P (χy)/χ, χ ∈ R+, the Þlm-grain noise, z = y + Kyαη,
K,α∈R+ and η∼N (0,1), and the �multiple-look� speckle
noise, z = L−1*L

i=1 y3i , 3i ∼ E (β), β ∈ R+. The calli-
graphic letters P , N , and E denote, respectively, the Pois-
son, Gaussian, and exponential distributions. For the above
observation models, the variance functions ρ (y) = σ 2z are
ρ (y) = y/χ , ρ (y) = K 2y2α, and ρ (y) = y2β/L , respec-
tively. For all these experiments, the DCT transform is cho-
sen because of its better energy compaction properties for
stationary signals. In our implementation we use ( = 1.2,
H = [4,6,8,12,16] and γ = 0.85. The true signal y is
assumed to have range [0,255].



Figure 1: Raw-data from CMOS sensor, adaptive block-sizes (black h j+=4, white h j+=16), and denoised estimate ŷW.

noise type noisy [5] [11] [2, 3] AS B-DCT
Poisson 1243 160 145 120 104
Film-grain 1351 169 150 123 109
Speckle 4442 372 378 286 225
Poisson 758 252 179 183 149
Film-grain 829 267 188 185 154
Speckle 1698 387 318 330 257

Table 1: MSE values for different models, and methods.

χ noisy [12] [9] [2, 3] AS B-DCT
30/255 1054 168 143 73 61
60/255 525 117 96 50 42
90/255 349 93 75 40 34
120/255 262 81 63 34 30
30/255 1015 199 154 136 107
60/255 504 140 97 89 70
90/255 336 113 74 70 55
120/255 254 97 61 60 46

Table 2: MSE comparison against algorithms for Poisso-
nian noise.

Firstly, in Table 1 we give a comparison for the
simulations presented in [11] for the above noise mod-
els with parameters χ=0.1, K=3.3, α=0.5, L=4, and
β=1. In the table our results are compared against the
adaptive-neighborhood Þlter [11], the noise-updating re-
peated Wiener Þlter [5] (as quoted in [11]), and the recur-
sive anisotropic LPA-ICI technique [2, 3].
Next, in Table 2 we compare our results for removal

of Poissonian noise (χ = 30
255 ,

60
255 ,

90
255 ,

120
255 ) against those

obtained by two other transform-based methods [12],[9] re-
cently developed speciÞcally for this type of noise and by
the recursive anisotropic LPA-ICI technique.
The results in the tables show that the proposed

adaptive-size block-DCT (AS B-DCT) algorithm outper-
forms all other methods, for all considered noise models
and noise levels.
Finally, we show a result of denoising real data ac-

quired by the CMOS sensor of a Nokia cameraphone. The
statistical characteristics of the sensor�s raw-data have been
studied, and were found to follow very accurately the ob-
servation model (1). The corresponding variance func-
tion ρ (y) has been estimated and used in the algorithm.
In low-light conditions, or for short exposure-times, the

signal-to-noise ratio can be dramatically low. Figure 1
shows the raw-data captured with an exposure time of 4ms,
the adaptive block-sizes selected by the LPA-ICI (step I),
and the denoised estimate ŷW obtained using the proposed
adaptive-size block DCTmethod. In the Þgure it is possible
to observe how the adaptive block-sizes reveal the image
features such as edges and details. Despite the moderately
high level of the noise in the raw-data, the quality of the de-
noised estimate is rather high: smooth areas are faithfully
restored and Þner details are accurately preserved.
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