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ABSTRACT

We consider the estimation of the variance of an additive
white Gaussian noise corrupting an image.
In the proposed approach, we exploit the nonlocal self-

similarity of images to achieve an improved separation of
noise and signal. In particular, we utilize the same adap-
tive 3-D transform decomposition used in the BM3D (block-
matching and 3-D Þltering) denoising algorithm, where
mutually similar blocks are stacked together and jointly
processed. An adaptive-size portion of the high-frequency
ends of the 3-D transform spectra is retained and used as
input sample for a robust median estimator of the absolute
deviation.
Experimental analysis demonstrate a state-of-the-art ac-

curacy of the proposed approach.

1. INTRODUCTION

The problem of estimating the statistics of the noise corrupt-
ing a digital image is a basic but fundamental step in many
image processing applications. For instance, in image de-
noising, the amount of smoothing is adjusted based on the
strength of the noise (e.g., [2],[3],[4],[6]). Similarly, when
compressing noisy images, the optimal quantization steps are
chosen based on the level of the noise, so that only the useful
part of the data is coded [13],[15].
Roughly speaking, algorithms for estimating of the noise

characteristics rely on the ability of extracting some features
from the image which are affected mainly or exclusively by
the noise and not by the image. The local smoothness or
fast spectral decay of natural images are typical hypotheses
to make the estimation possible, e.g., by measuring the noise
statistics on some homogenous patches [1] or on the highest-
frequency portion of the image spectrum [4],[7].
Highly structured, detailed, and textured images are more

difÞcult to process, since part of the underlying true image
often contributes to the measured features, leading to an over-
estimate of the noise statistics. Such overestimation spoils
the precision of the following processing stages: particularly
in denoising, it leads to oversmoothing of the image details.
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In this paper, we consider the estimation of the variance
of an additive white Gaussian noise (AWGN) corrupting an
image. This is the simplest and most widely used model
describing noise in digital images. As such, a number of
different methods for estimating this variance has been pro-
posed. The most successful ones are based on spectral de-
compositions of the image through a normalized decorrelat-
ing transform such as wavelets or discrete cosine transform
(DCT). The noise characteristics are preserved by this oper-
ation while at the same time the energy of the underlying im-
age is compacted into few coefÞcients well localized within
the low-frequency portion of the spectrum. Sample statistics
taken on the high-frequency end of the spectrum produce an
estimate of the variance of the initial corrupting noise. The
success of this approach depends on both 1) how well the
transform is able to compact or sparsify the signal and 2)
how insensitive the sample statistic is with respect to leakage
of the original image into the samples (i.e. outliers). There-
fore, improvement in estimation of the noise variance comes
from utilizing better sparsifying transforms coupled by ro-
bust statistics (most notably median or nonlinear histogram
Þt). One of the most popular algorithms is based the median
absolute deviation (MAD) of the wavelet detail coefÞcients
of z [9],[4]. Often the image is Þrst segmented into regions
of different smoothness and then the statistics are computed
only from the data belonging to the most homogeneous re-
gions [15],[1].
In the proposed approach, we exploit the nonlocal self-

similarity of images to improve the sparsiÞcation and thus
achieve an improved separation of noise and signal. In par-
ticular, we utilize the same adaptive 3-D transform decom-
position used in the BM3D (block-matching and 3-D Þlter-
ing) denoising algorithm [2], where mutually similar blocks
are stacked together into 3-D array structures called groups
and jointly processed. An adaptive-size portion of the high-
frequency corners of the 3-D transform spectra of each group
is retained and used as input samples for a robust median
estimator of the absolute deviation. The size of the sample
portions is determined aiming at achieving an optimal bias-
variance trade-off in the estimation of the median absolute
deviation. This adaptation is realized through the Intersec-
tion of ConÞdence Intervals (ICI) rule [11],[8].
The rest of the paper is organized as follows. In the

next section we formally introduce the adopted observation
model and notation. A detailed description of the proposed
algorithm is given in Section 3. Simulation experiments,
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Figure 1: Grouping with overlapping vs. non-overlapping
blocks.

demonstrating state-of-the-art performance of the algorithm,
are presented in Section 4. Section 5 concludes the paper
with some remarks about possible generalization of the ap-
proach.

2. OBSERVATION MODEL

Let z be an observed noisy image corrupted by some inde-
pendent and identically distributed (i.i.d.) AWGN η with
mean zero and variance σ 2. More precisely,

z (x)= y (x)+η(x) , x ∈ X ⊂ Z2, (1)
where y : X → Y ⊆ R is a deterministic unknown original
image and η(·) ∼ N!0,σ 2". Here, X and Y denote the im-
age domain (pixel coordinates) and codomain (range), re-
spectively. We assume Y = [0,255].
Our goal is to estimate the variance σ 2 from z. Neverthe-

less, for scaling reasons, we shall always indicate the results
in terms of the estimate σ̂ of the standard-deviation σ .

3. ALGORITHM

The proposed variance-estimation algorithm can be divided
into two main parts.

3.1 Part 1: Blockwise and groupwise operations

3.1.1 Overlap-free grouping and 3-D transform

First we process the image in sliding-block manner: for each
block ZxR in the image (here xR stands for the coordinate of
the top-left pixel of the block), we search for multiple other
blocks similar to it. We call group the 3-D array ZxR formed
by stacking together these similar blocks. In this way, to each
block in the image we associate a group. As in [2], we use
square blocks of Þxed size N1× N1 and group together up
to N2 similar blocks, including ZxR itself. Thus, each group
has size N1× N1×

##SxR ##, where ##SxR ## denotes the number
of blocks in the group. We have 1 ≤ ##SxR ## ≤ N2 and the ac-
tual value of

##SxR ## depends on the availability in the image of
blocks sufÞciently similar to ZxR . In our current implemen-
tation we set N1 = 8 and N2 = 16.
Groups are characterized by both intra-block correlation

(between the pixels of each grouped block) and inter-block
correlation (between the corresponding pixels of different
blocks). The former follows from statistical properties of
natural images, while the latter is a direct consequence of
grouping together similar blocks. Therefore, when we apply
a 3-D orthonormal decorrelating transform T3D on a group

we are effectively decorrelating the original signal, compact-
ing it into few coefÞcients of the spectrum T3D

!
ZxR

"
. In

this work, T3D is a 3-D separable discrete cosine transform
(DCT).
Unlike in the grouping used in BM3D denoising, here we

demand that grouped blocks are mutually nonoverlapping.
This ensures that the noise is independent and that the 3-D
transform applied on the group is equivalent to an orthonor-
mal transform applied on the union of all pixels which be-
long to the grouped blocks. Thus, we have that the group
spectrum is corrupted by some Gaussian zero-mean addi-
tive noise with standard deviation equal to σ . If overlapping
blocks were stacked together into a group, the noise would
be partly correlated, eventually leading to a severe under-
estimate of the noise standard deviation. Pragmatically, to
construct an overlap-free group, we stack blocks one after
the other, the most similar blocks Þrst, discarding blocks that
overlap with any of those already stacked. An illustration of
the overlap-free grouping is given in Figure 1.
To prevent noise patterns from inßuencing the grouping,

the similarity between blocks is evaluated by comparing cor-
responding blocks extracted from a denoised estimate ŷ of y.
The &2-norm of the difference between blocks is used for this
comparison. In particular, in our current implementation, this
ŷ is obtained from z using the standard BM3D Þlter, where
as input standard-deviation parameter we take a rather large
value, 4× σ̂MADW , σ̂MADW being the estimate of σ pro-
duced by the MAD of the wavelet detail coefÞcients of z [4].
While this results in obvious and detrimental oversmooth-
ing of the image, it effectively remove possible structures of
the noise realization. If one were to match directly on z, re-
peated noise patterns would be matched together and end up
in contributing to the lower-frequency portion of the group
spectrum, which also results in underestimation of the noise
standard deviation.

3.1.2 CoefÞcient analysis

The transform coefÞcients from all groups can be classiÞed
according to their position in the group spectrum and to the
number of blocks in the group to which they belong. For
example, within a group, it is rather natural to use a zig-zag
scan like the one illustrated in Figure 2. The idea is to sort all
coefÞcients according to the expected energy of the underly-
ing true signal. In particular, the coefÞcient in the highest-
frequency corner of a group spectrum is the one that should
be the least affected by the underlying image y and therefore
it appears as ideal candidate for being included in a sample
used to estimate the noise variance. This is particularly true
for groups that include many blocks, as these groups typi-
cally provide the most effective sparsiÞcation of the underly-
ing image.
However, large textures or structures in the image might

also be captured into large groups. It is not evident whether
or not such large groups should be preferred to smaller
groups that correspond to a smooth region. In other words,
while a zig-zag scan can be useful for sorting coefÞcients
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Figure 2: Ordering of the coefÞcients in the spectrum of a
group of size 8×8×16. The color of each spot represents the
position of the corresponding coefÞcient in the zig-zag scan,
starting from dark red (high-frequency corner) and ending
with dark blue (DC term).

within the same group, it is difÞcult to decide an a-priori or-
dering between coefÞcients coming from different groups.
While it is not possible to estimate the unknown signal

energy from the single noisy coefÞcient itself, a reasonable
upper-bound of this quantity can be obtained from the av-
erage of the magnitude of few of the subsequent coefÞcients
along the group zig-zag scan. This average is an upper-bound
because it includes the energy of the noise and because the
energy of subsequent coefÞcients in the scan is expected to
grow. We use it as a surrogate for the actual energy.
In this pragmatic way, we can sort all coefÞcients from

all groups in the highly redundant spectral representation of
BM3D.
In practice, it is sufÞcient to collect only a tiny portion of

the group spectrum: in our implementation, for each group
we collect only its Þrst 6 transform coefÞcients following the
zig-zag scan and use up to 32 coefÞcients to compute the
energy estimates. Thus, there is also no need to compute the
full spectrum of the groups.
We denote the collection of the sorted coefÞcients as

'ALL =
$
ϕ1,ϕ2, . . .

%
and the expected energy (upper bound)

of each coefÞcient as e j = E
&##ϕ j ##2', j = 1,2, . . . .

3.2 Part 2: Adaptive statistics

Once the transform coefÞcients from all groups have been
collected and sorted, we can proceed with the calculation of
the sample statistics.

3.2.1 Median of absolute deviation with varying sample size

As a robust estimate of the standard deviation, we use
the conventional median of the absolute deviations (MAD)
[9],[10],[14]. Given a sample ' containing |'| coefÞcients

ϕk , k = 1, . . . , |'|, it is deÞned as
mad{'} = 1

0.6745
median
ϕk∈'

$##ϕk##% . (2)

The standard deviation of the estimator (2) can be approxi-
mated as [17],[5]

std{mad{'}} = σ
(

1.35
|'|+1.5 , (3)

with the distribution of errors approaching a normal. We then
construct a nested sequence of samples {'l}l ,

$
ϕ1
% ⊂ ·· · ⊂

'l ⊂'l+1 ⊂ ·· · ⊂'ALL, where
'l =

h(l))
j=1
ϕ j ,

and h (l) is a monotonically increasing sequence of indices.
The sequence of the estimates σ̂ l = mad{'l} satisÞes two
basic conditions. Because

##' j ## ≤ ##' j+1##, the estimation
standard-deviation (3) is decreasing. Likewise, because e j ≤
ek for all j ≤ h (l)≤ k, we also have that the expected estima-
tion bias is increasing. We thus face a bias-variance trade-off
scenario, where the intent is to determine a value of l for
which the estimation mean squared error is minimized.

3.2.2 Adaptive sample-size selection using ICI

The Intersection of ConÞdence Intervals (ICI) rule [8, 11] is
the criterion used to adaptively select a value of l, and hence
the size of the sample used for computing the estimate of the
standard-deviation (2). We implement the ICI rule as fol-
lows.
Consider the intersection of conÞdence intervals Im =*m
l=l1Dl , where the conÞdence intervals Dl are deÞned as

Dl =
=
+
mad{'l}

,
1−*

-
1.35

|'l |+1.5
.
,mad{'l}

,
1+*

-
1.35

|'l |+1.5
./
,

* > 0 is a threshold parameter, and l1 ≥ 1 is a positive index.
Let m+ be the largest of the indexes m for which Im is non-
empty, i.e. Im+ 1= ∅ and Im++1 =∅. The adaptive sample
'+ is deÞned as'+ ='m+ , and thus the adaptive standard-
deviation estimate is

σ̂ =mad$'+% .
The index l1 ≥ 1 is used to ensure that the standard-

deviation estimate scaling the width of the Þrst conÞdence
interval D1 = I1 is reliable enough. We take l1 as the small-
est index l for which |'l | ≥ 500. The threshold parameter is
set as * = 1.5.

4. EXPERIMENTS

We present estimation results computed over a database of 25
color images (reference images of TID2008 database [16])
corrupted by noise with standard deviation σ = 5 and σ = 10.
Each R, G, B component is treated as a separate image.
This is a rather challenging database, as many of the im-
ages are highly textured. As reference methods, we consider
the MAD on the wavelet detail coefÞcients [4] (with verti-
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cal and horizontal Daubechies kernels of length 6) and the
DCT-based method [15], which can be considered as the cur-
rent state-of-the-art. Exactly the same noise realizations have
been used for the three methods.
The results are summarized in Figure 3 and Figure 4. We

can see that the proposed method has an accuracy which is
comparable with the method [15]. Both methods clearly out-
perform the simpler estimator [4], which because of the tex-
tures is largely overestimating the correct value of σ .

5. CONCLUSIONS

The very good variance-estimation results achieved by the
proposed approach are in line with the excellent denoising
performance of the BM3D algorithm. This conÞrms the ef-
fectiveness of non-local transforms as a powerful tool for di-
verse image processing problems. We wish to remark that
the reported results are preliminary, as no parameter opti-
mization had been carried out for the algorithm.
In this work, we mainly emphasized the adaptation with

respect to the transform, given both by the grouping and by
the sample-size selection (which is enabled by the speciÞc
transform decomposition), rather than on the sample statis-
tics estimator, for which we relied on the simple MAD. Bet-
ter estimators could have been used as well, provided a model
for their standard-deviation to be inserted in the ICI.
Although here we considered solely the basic AWGN

model, the same principles can be applied to more realistic
and practical noise models. In particular, our non-local trans-
form decomposition can be embedded within the estimation
algorithm for heteroskedastic observations [7], which is rel-
evant for modeling dealing with raw data from digital imag-
ing sensors. Let us however mention that, when facing het-
eroskedasticity, to avoid additional bias the block sizes can-
not be arbitrarily large. Therefore, one may need to use larger
blocks for determining the similarities than those eventually
stacked in the group. This is a stratagem shared by many
non-local Þltering algorithms (see e.g., [12],[3]).
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σ̂

image
Figure 3: Estimation of the standard deviation, σ = 5. Solid colored lines: MAD on wavelet detail coefÞcients [4]. Dashed
colored lines: block-DCT estimator [15]. Solid black lines: proposed method. Colors in the plot denote the estimation on the
different R, G, or B components.

σ̂

image
Figure 4: Estimation of the standard deviation, σ = 10. Solid colored lines: MAD on wavelet detail coefÞcients [4]. Dashed
colored lines: block-DCT estimator [15]. Solid black lines: proposed method. Colors in the plot denote the estimation on the
different R, G, or B components.
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