
Blockwise Multi-Order Feature Regression for Real-Time Path Tracing
Reconstruction

MATIAS KOSKELA, KALLE IMMONEN, MARKKU MÄKITALO, ALESSANDRO FOI, TIMO VIITANEN,
PEKKA JÄÄSKELÄINEN, HEIKKI KULTALA, and JARMO TAKALA, Tampere University, Finland

Fig. 1. In all image sets, left: 1 sample per pixel path-traced input, center: result of the proposed post-processing denoising/reconstruction pipeline, and right:
4096 samples per pixel reference. Leftmost highlights: the lion is barely visible in the input, but the proposed pipeline is able to produce realistic illumination
results without blurring the edges and high-frequency albedo details. Center highlights: the best case for the pipeline is geometry with sufficient light in the
input. Rightmost highlights: the worst case for the pipeline is the one with occlusions and almost no light, resulting in blurry artifacts.

Path tracing produces realistic results including global illumination using
a unified simple rendering pipeline. Reducing the amount of noise to im-
perceptible levels without post-processing requires thousands of samples
per pixel (spp), while currently it is only possible to render extremely noisy
1 spp frames in real time with desktop GPUs. However, post-processing can
utilize feature buffers, which contain noise-free auxiliary data available in
the rendering pipeline. Previously, regression-based noise filtering methods
have only been used in offline rendering due to their high computational cost.
In this paper we propose a novel regression-based reconstruction pipeline,

Authors’ address: Matias Koskela, matias.koskela@tuni.fi; Kalle Immonen, kalle.
immonen@aspekt.fi; Markku Mäkitalo, markku.makitalo@tuni.fi; Alessandro Foi,
alessandro.foi@tuni.fi; Timo Viitanen, viitanet@gmail.com; Pekka Jääskeläinen, pekka.
jaaskelainen@tuni.fi; Heikki Kultala, heikki.kultala@tuni.fi; Jarmo Takala, jarmo.
takala@tuni.fi, Tampere University, Tampere, 33720, Finland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/5-ARTZ $15.00
https://doi.org/0000001.0000001

called Blockwise Multi-Order Feature Regression (BMFR), tailored for path-
traced 1 spp inputs that runs in real time. The high speed is achieved with a
fast implementation of augmented QR factorization and by using stochastic
regularization to address rank-deficient feature data. The proposed algo-
rithm is 1.8× faster than the previous state-of-the-art real-time path tracing
reconstruction method while producing better quality frame sequences.

CCS Concepts: • Computing methodologies→ Ray tracing; Rendering;
Image processing;

Additional Key Words and Phrases: path tracing, reconstruction, regression,
real-time

ACM Reference Format:
Matias Koskela, Kalle Immonen, Markku Mäkitalo, Alessandro Foi, Timo
Viitanen, Pekka Jääskeläinen, Heikki Kultala, and Jarmo Takala. 2019. Block-
wise Multi-Order Feature Regression for Real-Time Path Tracing Recon-
struction. ACM Trans. Graph. X, Y, Article Z (May 2019), 14 pages. https:
//doi.org/0000001.0000001

1 INTRODUCTION
Real-time path tracing has been a long-standing goal of graphics
rendering research due to its ability to produce natural soft shad-
ows, reflections, refractions, and global illumination effects using

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

Z:2 • Koskela, M. et al

a conceptually simple unified drawing method. However, its com-
putational complexity is a major challenge; contemporary ray trac-
ing frameworks [AMD 2017; Parker et al. 2010; Wald et al. 2014]
are able to produce only around one path tracing sample per pixel
(spp) at real-time frame rates on desktop-class hardware. It is ex-
pected that the real-time performance will increase in the near
future as new generations of high-end GPUs will integrate hard-
ware acceleration for ray tracing [Patel 2018]. Nevertheless, a linear
improvement in rendering quality requires a quadratic increase in
computational complexity: to halve the signal-to-noise ratio in path
tracing, the number of samples per pixel has to be quadrupled [Pharr
and Humphreys 2010]. Consequently, reducing the amount of noise
to imperceptible levels without post-processing requires thousands
of samples per pixel and, therefore, denoising filters are used even
in offline path-traced movie rendering [Goddard 2014].

The trend of rising resolutions and refresh rates, driven especially
by the needs of virtual reality immersion, increases the amount of
required computations at the same rate as the computing hardware is
improved. As a consequence, it is unrealistic to expect the computing
hardware performance to improve fast enough to support real-time
path tracing at high frame rates. It seems that the achievable real-
time path tracing sample rates will remain around 1 spp with the
consumer devices of the near future [Alla Chaitanya et al. 2017;
Schied et al. 2017; Viitanen et al. 2018]. Therefore, there is an urgent
need for novel real-time post-processing denoising methods that
are targeted for 1 spp path-traced inputs.
Constructing high quality results from a 1 spp starting point is

hard evenwhen done offlinewithout strict real-time constraints. The
input has an extreme amount of noise, muchmore than conventional
image denoising algorithms can handle. However, the reconstruction
results can be improved by utilizing feature buffers, which contain
noise-free auxiliary data available from the path tracer. The buffers
can include useful information such as surface normals and texture
albedo colors. As is essential for the real-time goal, this information
can be extracted from a path tracer with little performance overhead.
Utilizing feature buffers allows reconstruction filters to, e.g., avoid
blurring samples across geometry edges, which is a very disturbing
artifact for the human eye, or it can reduce smearing the details in
the textures.
Moreover, fast path tracers can reproject and accumulate sam-

ples from multiple previous frames to reduce temporal noise that
varies between successive frames. Flickering artifacts are especially
noticeable by the end users. Real-time denoising algorithms must
specifically account for the temporal noise as there is no option of
simply adding more samples per pixel and the denoising needs be
fast enough to fit in the time slot left over from the rendering.

In this article we propose a new regression-based reconstruction
pipeline optimized for 1 spp input images that runs in real time on
desktop GPUs. The proposed method is 1.8× faster and has better
objective quality than the previous state-of-the-art real-time path
tracing reconstruction method. The article presents the following
contributions:

• A novel Blockwise Multi-Order Feature Regression (BMFR) al-
gorithm, where multiple versions of the feature buffers of
different orders are used for fitting.

• A fast GPU-based implementation of the BMFR algorithm.
• Proposal to use stochastic regularization to address the pos-
sible rank-deficiency of the blockwise features, avoiding nu-
merical instabilities without the extra complexity of pivoting.

In other words, the proposed algorithm combines a completely novel
concept (multi-order feature buffers) with a few established concepts
(feature regression, QR factorization). Regression-based methods
have typical had execution times in order of seconds [Moon et al.
2016] and have been considered to be applicable only in offline
context [Alla Chaitanya et al. 2017; Schied et al. 2017]. However,
we do regression in an unusual way (blockwise processing, aug-
mented factorization with stochastic regularization) and, therefore,
the proposed method is the first regression-based method to achieve
real-time performance.

2 RELATED WORK
Path tracing reconstruction methods are covered in a recent compre-
hensive survey article [Zwicker et al. 2015]. In general, the methods
can be divided into three categories based on their complexity:
offline methods, interactive methods, and real-time methods. Real-
time methods are closest to the context of this article, but we also
draw ideas from and compare to methods from the other categories.

Naturally, the best reconstruction quality for path tracing can be
achieved with offline methods. Since there is no strict time budget,
offline methods can use complicated and slow algorithms. Further-
more, as they are not constrained by real-time deadlines, their ex-
ecution time can vary heavily based on the input data. Typically,
offline methods target inputs that have more than 1 spp, because
it is not a problem to generate more path tracing samples if the
filtering itself takes a comparatively long time. In offline methods
it is also possible for the filtering to guide the sample generation
process in path tracing so that more samples are generated at prob-
lematic areas in screen space [Li et al. 2012]. Offline reconstruction
can be implemented, for example, with general edge-preserving
image filters like guided image filtering [He et al. 2013; Liu et al.
2017] or bilateral filtering [Tomasi and Manduchi 1998], which are
guided with feature buffers. Another approach is to use a neural
network [Kalantari et al. 2015], which can be trained even with
a complete set of frames from a feature-length movie [Bako et al.
2017]. A third approach is to fit the noise-free feature buffers to the
noisy image data [Bitterli et al. 2016; Moon et al. 2014, 2015].
Neural networks can also be used at interactive frame rates as

shown recently by Alla Chaitanya et al. [2017]. Since the quality of
the interactive methods is not as good as in offline methods, extra
care needs to be taken to address temporal stability of the results.
One way to address temporal noise is to use recurrent connections
in each neural network layer [Alla Chaitanya et al. 2017]. Sheared
filtering is another approach to achieve interactive frame rates [Yan
et al. 2015]. In contrast to the neural network approach, sheared fil-
tering also supports effects that produce noise to the feature buffers,
such as motion blur [Egan et al. 2009].
Reconstruction based on the guided image filter is the closest

method in the literature to the proposed one which can also reach
interactive frame rates [Bauszat et al. 2011]. However, it is not an
appealing approach for real-time implementation on modern GPUs,

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Blockwise Multi-Order Feature Regression for Real-Time Path Tracing Reconstruction • Z:3

Temporal
Accumulation QR Back

Substitution
Weighted

Sum
Temporal

Accumulation
Temporal

Anti-Aliasing

Accumulated
noisy data Fitted image

Accumulated
resultWeightsR

Noisy
data

without
albedo

Normals,
Positions &

Camera
parameters

Motion
vectors &
Discards

Noisy normals &
Noisy positions

Stochastic
Regularization

Normals &
Positions

Normals &
Positions

Motion
vectors &
Discards Albedo

Motion
vectors

I II III

Fig. 2. Overview of the proposed reconstruction pipeline. The pipeline inputs a noisy 1 spp path-traced frame and the corresponding normal and world-space
position buffers. It outputs a noise-free image with a good approximation of global illumination. Without the stochastic regularization, the back substitution
block produces NaNs and Infs due to rank deficiency.

since it requires either dozens of moving window operations or gen-
erating as many summed-area tables. Moving window operations
involve several orders of magnitude less parallel work than amodern
GPU can process concurrently, whereas generating summed-area ta-
bles requires an expensive parallel scan pattern and higher precision
values stored in the buffers.

There is recent research interest on algorithms that can perform
path tracing reconstruction in real time. A way to achieve required
execution speed is to use approximations or variants of the bilateral
filter, such as a sparse bilateral filter [Mara et al. 2017], or a hier-
archical filter with multiple iterations [Burt 1981] expanded with
customized edge-stopping functions [Dammertz et al. 2010; Schied
et al. 2017].

Real-time methods are typically targeted for 1 spp inputs because
the motivation for attempting to perform the reconstruction in real
time is low if the input frames must be computed offline anyway.
In case of 1 spp inputs and fast lower quality reconstruction, even
higher degree of variation is expected in the results, making tempo-
ral stability an even bigger problem with real-time methods.
Temporal stability can be improved by accumulating projected

frames [Yang et al. 2009], which produces a greater effective spp
and more static noise in world coordinate locations. A similar idea
can also be used for dealing with ambient occlusions [Jiménez et al.
2016]. However, in these reprojection-based techniques some of
the rendered pixels cannot utilize the accumulated data because
they were occluded in the previous frame. Such disocclusion events
can be recognized, for example, based on inconsistencies in the
world-space position or normal data in the feature buffers for the
subsequent frames. Interestingly, the reprojection method can also
support, for example, rigid body animations if there is a way to
find out where the current pixel was in the previous frame [Rosado
2007]. Temporal stability can be further improved, e.g., with simple
Temporal Anti-Aliasing (TAA) [Karis 2014], which uses colors from
the neighborhood of the pixel in the current frame to adjust the data
sampled from the previous frame. The idea of using temporal data

in anti-aliasing was introduced in Enhanced Subpixel Morphological
Antialiasing (SMAA) [Jimenez et al. 2012].

As in previous work, the proposed reconstruction algorithm also
utilizes TAA, and also reprojects and accumulates noisy data from
previous frames. However, we dynamically change the weight of the
new frame so that first samples after an occlusion do not get over-
weighted. Moreover, we add an additional step of data accumulation
after filtering to increase temporal stability and to avoid artifacts.
Moreover, instead of using the typical approximations of the bilateral
filter we use regression-based reconstruction, which has been pre-
viously considered too slow for real-time use cases [Alla Chaitanya
et al. 2017; Schied et al. 2017]. By means of applying augmented QR
factorization and stochastic regularization we made the regression
fast enough for real-time use. Finally, we introduce BMFR, where
multiple versions of the feature buffers of different orders are used
for fitting, improving the chances for the fitting to succeed.

3 RECONSTRUCTION PIPELINE
The proposed reconstruction pipeline can be divided into three
main phases: preprocessing, feature fitting and post-processing. The
phases, marked with roman numerals, are illustrated in Fig. 2 and
explained in subsections below. The proposed algorithm does not
need to guide the path tracing process in any way.

3.1 Input
The input for the real-time reconstruction filter is a 1 spp path-traced
frame and its accompanying feature buffers. The 1 spp frames are
generated by using a rasterizer for producing the primary rays and
feature buffers. We use mipmapped textures in albedo. Next, we
do so-called next event estimation: we trace one shadow ray to-
wards a random point in one random light source and then continue
path tracing by sending one secondary ray to a random direction.
Namely, we use multiple importance sampling [Veach and Guibas
1995]. The direction of the secondary ray is decided based on im-
portance sampling. We also trace a second shadow ray from the
intersection point of the secondary ray. Consequently, the 1 spp

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Z:4 • Koskela, M. et al

pixel input has one rasterized primary ray, one ray-traced secondary
ray and two ray-traced shadow rays. The random numbers in the
path tracer were generated with Wang hash [Wang et al. 2008]. The
ray configuration was chosen because it can be path traced in real
time and is able to reproduce effects like realistic global illumination,
soft shadows, and reflections. Every time we refer to 1 spp data in
this article, we refer to this ray configuration.

Before inputting the 1 spp input into our post-processing pipeline,
we remove first bounce surface albedo from it. Reconstructing with-
out albedo is a common practice [Alla Chaitanya et al. 2017; Bako
et al. 2017; Mara et al. 2017; Schied et al. 2017] because it ensures
that high-frequency details in first-bounce textures are not blurred
by the filter. The other commonly used idea is to decompose the
lighting contribution to a direct and indirect component [Bauszat
et al. 2011; Mara et al. 2017]. However, we do not do the separation,
because it typically assumes that the direct lighting component is
noise-free. Instead, we have 1 spp path-traced soft shadows in the
direct component and we filter both components at once. Filter-
ing two noisy components separately would require running the
pipeline twice, which does not double the runtime since heaviest
parts of the work can be shared. However, we did not find significant
quality increase and the slowdown is unacceptable in our real-time
context.

If the scene contains multilayer materials, the pipeline has to be
run separately for every material’s illumination component. How-
ever, all illumination components can be combined and filtered at
once if the albedo is the same for every layer. An optimization op-
portunity for multilayer materials is to compute a weighted sum
of different albedos and illuminations and filter all illuminations at
once [Schied et al. 2017]. Even though combining the illuminations
before filtering does not produce a physically correct result, this
approach can be used as a fast approximation.

3.2 Preprocessing
The preprocessing phase (I) consists of temporal accumulation of
the noisy 1 spp data, which reprojects the previous accumulated
data to the new camera frame. In the reprojection process, world-
space positions and shading normals are used to test whether we
can accumulate previous data or have to fall back to the current
frame’s 1 spp path-traced result. Because of accumulation, in most
of the pixels the effective spp can be greater than 1 even though
the individual frame inputs are 1 spp. In addition, accumulation
improves temporal stability of the noise.
Following a previous work [Schied et al. 2017; Yang et al. 2009],

we compute an exponential moving average and mix 80% of the
history data with 20% of the current frame data. However, we apply
one significant modification compared to the previous work: we
start by computing a cumulative moving average of the samples,
and use the exponential moving average only after the cumulative
moving average weight of the new sample would be less than 20%.
The use of regular average on the first frames and after occlusions
makes sure that the first samples do not get an excessively high
weight, and limiting the weight to a minimum of 20% makes sure
that the aged data fades away.

Computing the cumulative moving average requires that we store
and update the sample count of every pixel. Since we are interested
in the sample count only if the count is small, the values can be
stored in just a few bits. Loading and storing, for example, 8-bit
integers is insignificant compared to other memory accesses of the
temporal accumulation.

We use bilinear sampling of the history data and do a discard test
for each pixel separately. The final color is normalized by the sum
of the accepted sample weights only, thus the discarded pixels do
not affect the brightness of the sample. Also the sample count data
is sampled using the same custom bilinear sampling and the result
is rounded to the closest integer value.

3.3 Blockwise Multi-Order Feature Regression (BMFR)
The feature fitting phase (II) is based on the following feature re-
gression operated on non-overlapping image blocks, covering the
entire single frame.

Let F =
[
F1, . . . , FN

]
denote a set of available noise-free feature

buffers, such as the world-space positions and shading normals.
Typically these buffers are created as a side product of the path
tracing. However, they could contain artificially created data like
gradients. Every buffer in F has the same resolution as the noisy
frame. We consider an extended set T ofM feature buffers:

T =
[
F
γ1
n1 , . . . , F

γm
nm , . . . , F

γM
nM

]
, (1)

where nm ∈ {1, . . . ,N },m = 1, . . . ,M , γ1 = 0, and γm > 0,m =
2, . . . ,M , are positive exponents. The first buffer in T is a constant
buffer F 0n1 = 1. Note that γm ,m > 1, need not be an integer and can
be larger as well as smaller than 1.
Denoting by Ωi, j the set of absolute coordinates of the pixels

within an image block located at position (i, j), the Blockwise Multi-
Order Feature Regression (BMFR) problem can be formulated like a
standard least-squares expression with respect to the multi-order
features T as

α̂ (c) = argmin
α (c)∈RM

∑
(p,q)∈Ωi, j

(
Z (c)(p,q) −

M∑
m=1

α
(c)
m F

γm
nm (p,q)

)2
, (2)

where Z (c) is the c channel of the noisy path-traced input which
can be temporally accumulated (e.g., c may be red, green, blue, or
any relevant luminance or chrominance component). The estimate
of the noise-free scene Y for channel c and block Ωi, j is thus

Ŷ (c)(p,q) =
M∑

m=1
α̂
(c)
m F

γm
nm (p,q) . (3)

While being a simple linear solution, it is non-linear w.r.t. the fea-
tures F , which makes it more flexible and capable of better fit to the
data than established methods based on linear regression on F .

3.4 Feature Fitting with Stochastic Regularization
We solve the least-squares problem (2) by the Householder QR
factorization [Heath 1997]. Specifically, and using matrix-vector
notation, let us reshape theM blockwise feature buffers Fγmnm (p,q),
(p,q) ∈ Ωi, j ,m = 1, . . . ,M , as column vectors of lengthW , where
W is the number of pixels in the block Ωi, j , and let T be theW ×M

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Blockwise Multi-Order Feature Regression for Real-Time Path Tracing Reconstruction • Z:5

(a) 1 spp (b) World-space
positions

(c) Normals (d) World posi-
tions 2

(e) Just constant
buffer in fitting

(f) + world posi-
tions

(g) + normals (h) + world posi-
tions 2

(i) Reference

Fig. 3. Different buffers and results with a single 64 × 64 block of BMFR. Notice how adding world-space positions squared allows the fitting to generate a
more realistic soft shadow under the edge. In the fast implementation we use 32 × 32 blocks, but the larger blocks visualize the benefit in a single block more
clearly. The results get closer to the reference when temporal accumulation averages multiple blocks from different displacements.

matrix obtained by horizontal concatenation of such column vectors.
Further, let

T̃(c) =
[
T , z(c)

]
(4)

be theW × (M + 1) matrix obtained by augmenting T with z(c),
which is Z (c)(p,q), reshaped into a column vector of lengthW . We
expectW ≫ M , meaning that each block has much more pixels
than there are feature buffers.
Assuming that T̃(c) is full rank, the Householder QR factoriza-

tion yields an (M + 1) × (M + 1) upper triangular matrix R̃(c) such
that T̃(c) = Q̃(c)R̃(c), where Q̃(c) is aW × (M + 1) matrix with or-
thonormal columns. Given R̃(c), there is no need to compute Q̃(c)

for solving the linear least squares problem; instead, we can solve
the transformed system contained in R̃(c) [Heath 1997, pp. 92-93].
By dealing just with the smaller matrix R̃(c) we get a significant
performance improvement.
Specifically, if we denote by R and by r(c), respectively, the top-

leftM ×M sub-matrix and the top-rightM × 1 sub-column of R̃(c),
the solution α̂ (c) of (2) is given as

Rα̂ (c) = r(c) , (5)

which can be solved, for example, via back substitution, which is
simple and fast. Hence, Ŷ (c)(p,q), (p,q) ∈ Ωi, j , (3) is obtained as

ŷ(c) = Tα̂ (c) , (6)

where ŷ(c) is Ŷ (c) reshaped into a column vector of lengthW . Ob-
serve that R (and its inverse) does not depend on z(c), and that r(c)
can be computed for different channels without recalculating R,
which allows to process multiple channels with minimal extra cost.

In practice, T̃(c) may be rank-deficient, leading to numerical in-
stabilities that break the factorization. While the rank-deficiency is
typically managed by pivoting, we employ stochastic regularization.
That is, we add noise to the input buffers, which makes them linearly
independent, i.e., (4) becomes

T̃(c) =
[
T +N , z(c)

]
, (7)

whereN is aW ×M matrix of zero-mean independent and identically
distributed noise.T within every block is scaled to be in range [−1, 1],
before this addition. Since the average of the noise is zero, we can
expect that this regularization does not increase the fitting bias. The
synthesis (6) always uses the noise-free buffersT, so the noise itself is
not visible in the reconstructed estimate. In our implementation, we

use zero-mean uniformly distributed noise over an interval [−ε, ε],
thus having variance ε2/3. The value of ε that worked with all our
tested scenes was 0.01. Much stronger noise (ε ≈ 1.0) caused visibly
too bright and dark constant blocks, whereas much weaker noise
(ε ≈ 0.0001) failed to regularize, leading to divisions by zero in the
factorization.

3.5 Post-processing
The purpose of the post-processing phase (III) is to increase temporal
stability and the perceived visual quality.

First, the fitted frame is temporally accumulated, which reduces
blocky artifacts caused by operating the BMFR algorithm on non-
overlapping blocks and improves temporal stability. Importantly,
small fitting errors caused by the stochastic regularization can be ex-
pected to cancel out when multiple frames are accumulated because
the injected noise has a zero mean. To aid the reduction of blocki-
ness, BMFR processes each frame over a grid of non-overlapping
blocks which is displaced with random offsets. These offsets prevent
the artifacts that would arise from reusing same block positions on
a static scene with a static camera.
This post-processing phase is essentially the same process that

was done in the preprocessing step to increase the effective spp.
However, the process is faster because bandwidth can be saved by
reusing the motion vectors and discard decisions from the prepro-
cessing phase. By loading for every pixel just 2 floats and 4 booleans,
we avoid loading all 5 world-space positions and shading normals
again, all containing three channels (1 from current frame, and 4 for
bilinear sampling of the previous frame).

In this second temporal accumulation we use 10% of new data and
90% old data because these values hide the block place variations.
Similarly to the first temporal accumulation we use the cumulative
moving average until the weight of the new sample has reached the
chosen 10%. Using the cumulative moving average in this second
temporal accumulation is crucial since the first block fitted after
an occlusion is more likely to contain outlier data and with the
cumulative moving average it is mixed with subsequent framesmore
quickly. For example, if we used the exponential moving average,
after three frames the weight of the very first fitted data would still
be more than half. With cumulative moving average the weight is
the same as in a regular average: one third.

As a last step of the pipeline, TAA [Karis 2014] is used. While in
many of the test scenes TAA decreases the quality measured by the

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Z:6 • Koskela, M. et al

10 15 20 25 30 35
Number of feature buffers

0

5

10

15

20

25

T
ot

al
 e

xe
cu

tio
n

tim
e

(m
s)

Fig. 4. The execution time of the whole pipeline with different counts of
feature buffers. The QR block size used in this measurement was 32 × 32.
In the rest of the runtime results we use 10 feature buffers. All of the test
scenes have a similar runtime since the runtime varies only in the stages
that access previous frame data from pixels stated by the motion vectors.

objective quality metrics, in our experience it gives more visually
pleasing results.

4 COMPLEXITY ANALYSIS
Phases I and II in the proposed pipeline can be implemented using
the parallel map and parallel stencil patterns. Thus, the execution
time of these phases is linearly dependent on the number of pixels
in the input image. In these phases adding more feature buffers only
increases the amount of data stored in first accumulation stage. In
other words, the processing can be parallelized easily because the
result pixels are independent of each other. However, adding more
computing hardware is likely to quickly reach its limits because all
the stages are mostly memory bound.

Themost important stage in the pipeline regarding the complexity
analysis is the QR stage. When the number of pixels in the input im-
age is increased, the number of QR blocks grows linearly. The blocks
do not affect each other in any way, so all of them can be loaded and
processed in parallel, and therefore performance scales linearly. In
contrast, if one feature buffer is added, it must be transformed by all
of the previous feature buffers. The transform requirement comes
from the Householder reflections method: the number of required
transforms is O(M(M + 1)/2) = O(M2), whereM is the number of
feature buffers. However, the work per each feature buffer in the
proposed method is quite small, which can be seen in Fig. 4. With a
reasonable number of feature buffers, the execution time increase is
almost linear. For comparison, guided filter’s [Bauszat et al. 2011]
requirement is to generate O(M2) summed-area tables. Therefore,
we can include more feature buffers in the same execution time to
produce results that have a higher visual quality.

5 FEATURE BUFFER SELECTION
The choice of which feature buffers to include in the filtering is
crucial. Including additional feature buffers increases the computa-
tional complexity by O(M2), but the resulting quality improvement

0 10 20 30 40 50 60
Frame number

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

R
M

S
E

Only constant buffer
Shading normals
World-space positions
Gradients
Shading normals squared
World-space positions squared

Fig. 5. The effect on denoising quality as more sets of buffers are added
cumulatively, measured by Root Mean Square Error (RMSE) (lower is better)
for the Sponza test scene with a static camera. The buffers are greedily
added in the order specified in the legend from top to bottom.

0 10 20 30 40 50 60
Frame number

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

S
S

IM

Only constant buffer
Shading normals
World-space positions
Gradients
Shading normals squared
World-space positions squared

Fig. 6. The effect on denoising quality as more sets of buffers are added
cumulatively, measured by Structural SIMilarity (SSIM) [Wang et al. 2004]
(higher is better) for the Sponza test scene with a static camera. The buffers
are greedily added in the order specified in the legend from top to bottom.

varies dramatically based on the buffer type. It is thus essential in
real-time filtering to include only the most beneficial feature buffers.
To this end, we measured the effects of different buffer types

by greedily adding all available set of buffers to find the ones that
helped the most. Greedy addition means that we tested every avail-
able buffer and added the one that improved the objective quality
the most. After each addition we started the same process again
with the rest of the available buffers. Fig. 5 and Fig. 6 show the
obtained results for the Sponza test scene with a static camera;
the corresponding results for our other test scenes yield similar
conclusions.

We also experimented by adding horizontal and vertical gradient
buffers consisting of a horizontal or a vertical gradient from 0 to 1
for each block, respectively. The idea was to provide more freedom
for the feature regression (2). However, the gradient buffers yielded
only minor quality improvements, as Fig. 5 and Fig. 6 also show.

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Blockwise Multi-Order Feature Regression for Real-Time Path Tracing Reconstruction • Z:7

Only minor quality improvements make sense because typically
there is always gradient-like data available in the world position
buffers.
Every channel of each feature buffer was added at once even

though some channels might have not contributed much to the
result, because otherwise the feature selection would have suffered
from overfitting to camera orientations.
Based on the aforementioned measurement, we adopted the fol-

lowing multi-order set of feature buffers:

T =
[
1,nx ,ny ,nz ,wx ,wy ,wz ,w2

x ,w
2
y ,w

2
z
]
, (8)

where nx ,ny ,nz are the three channels of shading normals, and
wx ,wy ,wz are the three channels of world-space positions. This
set of buffers was selected because, as can be seen in the figures, the
error is decreased the most by adding the normals and the world-
space positions. The benefit of adding further buffers appears to get
negligible compared to increased execution time.
However, the computational error metrics do not reveal small

problematic areas in the result, and therefore, after visual exami-
nation, we decided to add the second-order world-space positions.
Fig. 3 illustrates the reason for this choice; world-space positions
are particularly useful for getting more convincing soft shadows.

In the proposed method, the specular highlight is generated from
a feature buffer that happens to have data similar to the highlight.
If the highlight is not well presented by the available feature data,
the result improves when multiple block locations from successive
frames are accumulated. Adding material roughness to the set of
feature buffers allows illumination to vary between regions inside a
block, which only helps if there are materials that have a roughness
texture with fine details. However, the constant feature buffer gen-
erates the same result if regions of the input larger than block size
have uniform roughness.

6 TEST SETUP
Wemeasured the visual quality and execution speed of the proposed
algorithm while rendering animations. To provide the algorithm
with a realistic amount of accumulated frame data, which is also
hindered by occlusions, all except two of the test inputs had continu-
ously moving cameras. Each frame of these animations can be found
in the supplementary material of this article. One frame consists of
1 spp input data, the corresponding feature buffers, and a 4096 spp
reference rendering.
In the following we describe our test setup, which includes an

example implementation of the proposed algorithm and a set of
compared algorithms.

6.1 GPU Implementation
Tomeasure the performance of the proposed algorithmwith realistic
hardware, we implemented the algorithm using OpenCL and opti-
mized it for a contemporary high-end desktop GPU, AMD Radeon
Vega Frontier Edition. The code we wrote for the measurements
is available as supplementary material of the article. The primary
implementation choices that affect performance as it pertains to our
target hardware are described next.
The block size was chosen to be 32 × 32 because even though

we found that the best quality is achieved with a 64 × 64 block,

Table 1. The number of memory accesses in parallel reduction. Level means
combining two values into one value. Iteration is one code block without
synchronization between parallel workers.

Levels per iteration 1 2 3 4 5
Elements per iteration 2 4 8 16 32
Memory accesses 3 5 9 17 33
Accesses per level 3 2.5 3 4.25 6.6
Accesses for 1024 elements 3069 1705 1317 1161 1089

32 × 32 block gives us four times more parallel work to improve the
processing element utilization. Moreover, we need to synchronize
within the block, and synchronization can be done in groups of 256
parallel work items in the targeted hardware. Consequently, already
with the 32 × 32 block, the code needs to be unrolled four times
between the synchronization points.

For the displacement, we used a static sequence of 16 random off-
sets, uniformly distributed over the whole set of possible offsets. The
displacement is done both horizontally and vertically. This number
gives enough variety of displacements with the chosen blendings
of history data and the new frame in temporal accumulations.

After avoiding the heavy matrix multiplications by just comput-
ing R̃, the computation on the targeted hardware was limited by
the speed of accessing the data and performing reduction in local
memory, i.e., computing the sum of all concurrently processed ele-
ments in local memory1, which is the fastest memory space visible
to the whole block.
The reduction calculations are needed for the sum calculations

of the dot products and vector norms, both of which are computed
multiple times in the Householder algorithm. Reduction is also used
in every block to find out the local minimum and maximum of every
feature, which are used to scale the values to be in the same range
in the fitting. We implemented the reduction with parallel reduc-
tion, where all parallel processing elements process more than two
elements on every iteration. The number of memory accesses per
iteration for different counts of elements processed at once can be
seen in Table 1. The fastest alternative for reduction of 32×32 = 1024
elements on our target hardware was experimentally determined
to consist of summing 4 elements on the first two iterations and 8
elements on the last two iterations. This approach appears to be a
good compromise between the parallelism available and the total
amount of memory accesses. Fewer levels per iteration gives more
parallel work. In contrast, more levels per iteration results in less
memory accesses in total.
The largest implemented kernel was fitting, which contains al-

most all the stages of phase II. In contrast to what was found by Laine
et al. [2013], in this case a single “megakernel” which included the
heaviest stages of phase II was the fastest because the intermediate
data could be passed through fast local memory and registers.
For faster data access we use half-precision floating-point num-

bers as the temporal storage type and order the pixels such that
every 32 × 32 block is at consecutive addresses in memory. Thanks

1We use OpenCL terminology and call this memory space local memory. The corre-
sponding CUDA term is shared memory.

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Z:8 • Koskela, M. et al

to the memory layout, the hardware can load and store the data
with faster vector accesses. It is also possible that the path tracer
stores the data directly in this format because many path tracers
render square blocks of pixels in one work group since then there
is more cache locality in the primary rays [Aila and Karras 2010].

6.2 Compared Algorithms
We compared the proposed algorithm to five state-of-the-art algo-
rithms: 1) The neural network denoiser which is freely available in
the OptiX 5.0 SDK. In this article we refer to it as the OptiX Neural
Network Denoiser (ONND). 2) A recent state-of-the-art real-time
Monte Carlo reconstruction algorithm, Spatiotemporal Variance-
Guided Filtering (SVGF) [Schied et al. 2017]. 3) Guided Filtering
(GF) [Bauszat et al. 2011], which we consider the algorithm-wise an-
cestor of the proposed work. 4) An off-line reconstruction algorithm
called Nonlinearly Weighted First-order Regression (NFOR) [Bitterli
et al. 2016]. 5) Another real-time reconstruction method, namely An
Efficient Denoising Algorithm for Global Illumination (EDAGI) [Mara
et al. 2017], which is separately compared in Subsection 7.3.

The ONND implementation is based on the interactive reconstruc-
tion from the article by Alla Chaitanya et al. [2017], but differs in a
few ways. Most importantly, every frame is denoised individually,
which causes low temporal stability. The OptiX implementation also
does not separate albedo from the input before filtering. Moreover,
it uses a different set of feature buffers than the original article.
We attempted to use the filter with temporally accumulated noisy
data similar to our method but found that with the default training
set the filter is not able to discriminate between detail and noisy
data due to changes in noise characteristics caused by accumula-
tion. Consequently, we had to use a 1 spp input with this denoiser.
Furthermore, ONND requires that the input is tone-mapped and
gamma-encoded.
The authors of SVGF did not provide an implementation for ac-

curately reproducing the results of their article. Therefore we used
a freely available implementation of the algorithm in the quality as-
sessments.2 We modified the implementation to follow the original
article’s algorithm more closely by running it separately for direct
and indirect lighting and by removing albedo before filtering. We
also changed it to use the same TAA [Karis 2014] as in the SVGF
article.
We used our own code for the Guided Filter implementation.

Our implementation is based on the MATLAB code provided by the
authors of the original article on guided filter [He et al. 2013] but has
been extended to allow an arbitrary number of feature buffers. As in
the article by Bauszat et al. [2011], we used a 4-dimensional guidance
image consisting of three normal channels and depth. In the article,
only indirect illumination is filtered. For the indirect component, we
used radius 24 and epsilon 0.01 as suggested in the article. Because
in our dataset also the direct illumination component is noisy, we
filtered it as well with guided filter. We used a smaller filter size
(radius 12) to cause less blurring, and therefore to improve the
results. The epsilon used for direct illumination was the same as for

2The SVGF version which was used as a base of our modifications can
be found at https://github.com/ruba/RadeonProRender-Baikal, Git commit hash
ed2a7e2d929653551f8a93ada5b164d2f9f624e7.

indirect illumination. Finally, we extended the method with albedo
removal and accumulation of noisy data.

For NFOR we used the freely avaible code released by the original
authors [Bitterli et al. 2016]. For comparison fairness, instead of
using 1 spp inputs, we used the reprojected and accumulated inputs
and reprojected running variances, which improved the quality sig-
nificantly. We also applied TAA to the results because it improved
subjective quality in all test scenes and objective quality in approxi-
mately half of the tests scenes.

7 RESULTS
This section reports the performance of the algorithm in terms of
the visual quality of the result and the execution speed with the test
setup described in the previous section.

7.1 ObjectiveQuality
We used four different metrics to measure the objective quality of
our method compared to the other methods: Root Mean Square Error
(RMSE), Structural SIMilarity (SSIM) [Wang et al. 2004], temporal
error [Schied et al. 2017], and Video Multi-Method Assessment Fusion
(VMAF)3 [Aaron et al. 2015; Li et al. 2016]. The results of our mea-
surements are presented in Table 2 and Table 3, and comparison
images of all the methods are shown in Fig. 7. The known limitations
of the proposed method are further discussed in Section 8.
As expected, the offline comparison method NFOR is able to

obtain best results in most of the scenes with most of the metrics.
However, the results of the proposed method are close to the NFOR
results with more than ten thousand times faster runtime. NFOR
is not originally designed for 1 spp inputs, but when we give it
reprojected inputs, the effective spp count gets close to the counts
used in the original paper.
In the majority of the test scenes, our method outperforms the

previous real-time methods in terms of RMSE, SSIM and VMAF.
In the remaining scenes our results are still generally comparable
to the other real-time methods, with only marginal differences at
the top. In the few cases where our results are average in terms of
one metric, such as for RMSE in the moving light Sponza, another
metric still ranks us at the top, in this case VMAF. Hence, in such
cases the performance difference can be at least partially attributed
to inherent limitations in the simple metrics, as they disagree with
each other to some extent; therefore, we provide the results for
several metrics. Moreover, our results could be improved if only
optimizing these metrics by skipping TAA in phase III, since it
introduces some blur in the results and thus affects RMSE, SSIM
and VMAF negatively. Nevertheless, we chose to apply it due to it
producing visually more pleasing results to our eyes.
In terms of temporal error [Schied et al. 2017], our results are

overall similar to those of the guided filter and ONND. SVGF yields
the lowest temporal error in all of the scenes, with our method being
on par with it in the static scene. However, the used temporal error
metric is rather simple, as it only considers the average per-pixel
luminance differences between adjacent frames, so its correlation
with subjectively perceived temporal quality variance is not imme-
diately evident. This observation is further corroborated by the fact

3The VMAF model used in the comparison was v0.6.1.

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

https://github.com/ruba/RadeonProRender-Baikal

Blockwise Multi-Order Feature Regression for Real-Time Path Tracing Reconstruction • Z:9

1 spp Reference Ours ONND SVGF GF NFOR Ours

Classroom
Living

room
San

M
iguel

Sponza
Sponza

(glossy)

Fig. 7. Closeups highlighting the quality differences between the proposed pipeline and the comparison methods taken from animated sequences after 30
frames. Detailed description of the insets is in Subsection 7.2. Reference is 4096 spp and the comparison methods are OptiX Neural Network Denoiser (ONND)
which is based on Alla Chaitanya et al. [2017], Spatiotemporal Variance-Guided Filtering, (SVGF) [Schied et al. 2017], Guided Filtering (GF) which is based on
Bauszat et al. [2011], and Nonlinearly Weighted First-order Regression (NFOR) [Bitterli et al. 2016].

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Z:10 • Koskela, M. et al

Table 2. Objective quality measurements for the results measured with RMSE (lower is better) and SSIM (higher is better), each averaged over all 60 frames.
For brevity, Sponza with a static camera is referred to as “Sponza (static)”, and Sponza with a moving light as “Sponza (light)”.

Average RMSE Average SSIM
Proposed ONND SVGF GF NFOR Proposed ONND SVGF GF NFOR

Classroom 0.0356 0.0431 0.0561 0.0586 0.0321 0.960 0.938 0.957 0.937 0.961
Living room 0.0315 0.0526 0.0434 0.0608 0.0272 0.953 0.927 0.936 0.918 0.957
San Miguel 0.0895 0.0982 0.1160 0.1011 0.0812 0.753 0.669 0.745 0.742 0.757
Sponza 0.0282 0.0591 0.0661 0.0509 0.0306 0.965 0.901 0.943 0.961 0.957

Sponza (glossy) 0.0564 0.0671 0.0900 0.0736 0.0503 0.906 0.847 0.893 0.885 0.899
Sponza (static camera) 0.0317 0.0756 0.1159 0.0939 0.0394 0.973 0.876 0.906 0.932 0.948
Sponza (moving light) 0.1450 0.0773 0.1418 0.0936 0.0811 0.835 0.846 0.855 0.913 0.892

Table 3. Objective quality measurements for the results obtained with various algorithms, measured with a simple temporal error as in [Schied et al. 2017],
averaged over all 60 frames. The quality is also measured with VMAF (higher is better).

Average temporal error VMAF
Ref. Proposed ONND SVGF GF NFOR Proposed ONND SVGF GF NFOR

Classroom 0.043 0.037 0.040 0.035 0.039 0.040 53.14 52.78 41.51 24.90 61.11
Living room 0.024 0.021 0.027 0.019 0.019 0.022 57.85 61.53 46.78 21.58 64.61
San Miguel 0.082 0.060 0.061 0.056 0.073 0.067 21.68 21.63 10.77 25.73 28.03
Sponza 0.059 0.051 0.048 0.045 0.056 0.052 74.81 49.66 50.58 58.04 70.54

Sponza (glossy) 0.058 0.050 0.043 0.044 0.053 0.054 38.50 32.87 22.73 24.22 44.87
Sponza (static camera) 0.004 0.001 0.019 0.001 0.003 0.001 70.46 32.71 30.53 24.97 65.52
Sponza (moving light) 0.011 0.007 0.022 0.006 0.010 0.009 32.19 32.46 19.09 26.40 49.24

that, as Table 3 shows, the temporal error of the reference itself is
typically higher than that of the reconstructed result. Hence, instead
of merely focusing on the absolute error, it may also be useful to
consider how close the error of the reconstructed result is to the
error of the reference. However, similar temporal error readings
can be caused by completely different changes in the consecutive
frames. On the other hand, VMAF demonstrably correlates well with
subjective quality [Li et al. 2016], and in most cases our method
yields significantly higher VMAF results than the other real-time
methods.

7.2 SubjectiveQuality
Subjective quality of the proposed method can be evaluated with
Fig. 7. Moreover, all full resolution frames and a video are available
in the supplementary material of this article.
In Fig. 7 the insets of the Living room and Classroom scenes

represent cases where our algorithm is able to outperform the com-
parison methods. ONND sometimes starts to generate details that
are not present in the reference at all. Due to its À-Trous nature,
SVGF generates sometimes light artifacts that are typical to À-Trous
based methods. These are visible for example in the red inset of
the Living room scene. On the other hand, GF often overblurs the
illumination, which might be due to poor parameter selection. We
used the best parameters according to the original authors.
Insets of the San Miguel scene show different foliage cases. Our

method produces results which are visually pleasing and believable,
though somewhat overblurred.

One of the main motivations of our work is visible in the red
insets of the Sponza scene. The proposed method can produce in
real time dynamic soft shadows that are very close to the reference.
The green insets of the same scene represent a case where there is
just a small amount of light and our algorithm must rely on 1 spp
data due to occlusions (camera is moving back and rightwards). In
this case the result contains some blurred artifacts.

The roughness in the Sponza (glossy) scene is 0.1 for every mate-
rial. As can be seen in the red insets of the Sponza (glossy) scene
in Fig. 7, our algorithm can perform well with even quite complex
specular highlights. On the other hand, the green insets of the same
scene represent a hard case where all of the methods fail and it
is up to the viewer to decide which type of imperfection is the
least disturbing. More discussion on the limitations of the specular
highlights can be found in Section 8.

7.3 Comparison to Noise-Free Direct Lighting
In this subsection we report a separate comparison with EDAGI
[Mara et al. 2017]. This method is treated separately because it
assumes a rasterized noise-free direct lighting component. Thus, it
is incompatible with the stochastic noisy direct lighting in our input
dataset, preventing an objective comparison to the fully path-traced
reference like that in Tables 2 and 3.
Fig. 8 presents some of the test scenes from the original EDAGI

work, as reconstructed by the proposed method from a fully sto-
chastic path-traced lighting. When comparing these images to those
in their online supplementary material, it is visible how realistic

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Blockwise Multi-Order Feature Regression for Real-Time Path Tracing Reconstruction • Z:11

Fig. 8. Some of the scenes from [Mara et al. 2017] reconstructed with the proposed work.

Table 4. Average execution times of different stages in the proposed pipeline
on AMDRadeon Vega Frontier Edition. The division to OpenCL kernels is dif-
ferent than the stages in the Fig. 2. The division was chosen for performance
and code readability reasons. The total runtime is measured from the begin-
ning of the first kernel to the end of last kernel. All of the scenes and camera
paths yield similar timings, because only the runtime of accumulation and
TAA kernels is affected by the input data.

Phase Kernel Runtime
I Temporal accumulation 0.44 ms

II QR & back substitution 1.55 ms
Weighted sum 0.12 ms

III Temporal accumulation 0.23 ms
TAA 0.16 ms

Total 2.54 ms

Table 5. GPU runtimes of different comparison methods for 720p frames as
reported in the original articles. NVIDIA GeForce Titan X (Pascal) runtime
was measured with the OpenCL implementation, which was developed on
AMD Radeon Vega Frontier Edition. Consequently, there is likely room for
optimizations on NVIDIA platforms.

Method Runtime Hardware

Proposed (OpenCL) 2.5 ms AMD Radeon Vega FE
2.4 ms NVIDIA Titan X (Pascal)

[Alla Chaitanya et al. 2017] 55 ms NVIDIA Titan X (Pascal)
SVGF [Schied et al. 2017] 4.4 ms NVIDIA Titan X (Pascal)
GF [Bauszat et al. 2011] 94 ms NVIDIA GTX 285
EDAGI [Mara et al. 2017] 9.2 ms NVIDIA Titan X (Pascal)

soft shadows produced by the stochastic direct lighting make the
proposed kind of rendering compelling.

7.4 Execution Speed
The average execution times of different parts of the proposed
pipeline can be seen in Table 4. In the measurements we assumed
that the path traced 1 spp input and feature buffers are in GPU
buffers when we start the timer and that the result can be left to an-
other GPU buffer. That is, we model a scenario where a GPU-based
path tracer has left its data to GPU buffers and at the end, the results
are written to the frame buffer.
All of the runtimes reported in this section are with 1280 × 720

frames. We also confirmed with measurements that, as analyzed

in Section 4, the runtime scales linearly relative to the number of
pixels.

The execution time of the proposed pipeline was stable on AMD
Vega Frontier Edition (variation approximately ±0.04 ms) across
different scenes and animation frames. The only pipeline stages
where runtimes are affected by the input data are the ones with
temporal accumulation. The runtime variation is due to cachemisses
of dispersed loads and early exits, e.g., in case of projected pixels
that are detected to fall outside the new frame.

The proposed pipeline clearly outperforms the other algorithms
(listed in Table 5) in terms of execution speed. NFOR runtime is
left out from the table because it is in order of minutes rather than
milliseconds. SVGF, the previous state-of-the-art real-time method,
reports average execution times of 4.4 ms on NVIDIA Titan X (Pas-
cal). Our 2.4 ms execution time is thus 1.8× faster. Moreover, SVGF’s
execution time depends more on the input data because they fall
back to a slower method with harder inputs. The other real-time
method [Mara et al. 2017] has an average execution time of 9 ms
on NVIDIA Titan X (Pascal). However, they expect noise-free direct
lighting which makes the comparison difficult. Alla Chaitanya et al.
[2017] report runtimes of 55 ms on NVIDIA Titan X (Pascal), which
means the proposed pipeline is 22× faster. Guided filter [Bauszat
et al. 2011] execution time linearly scaled to 720p frame is 94 ms
on NVIDIA 285 GTX, and even for that number, noise-free direct
lighting is required. However, the article where the number was
reported is already a bit old and uses a previous generation GPU,
thus there could be room for improvement if the algorithm was
optimized for a modern GPU.

8 LIMITATIONS
We have observed three different categories of imperfections in the
results of the proposed method, which we plan to address in our
future work:

1) Because of the fixed sizes of the blocks, the algorithm can some-
times have difficulty constructing illumination that is not visible
in the feature data and is smaller than the block size. Example of
small soft shadows can be seen in Fig. 10. Another example of this is
specular highlights. High values in a small area are typically blurred
as can be seen in the last row of Fig. 7. However, different order
versions of the feature buffers and block place variation reduces the
problem significantly. Moreover, the quality can be improved by
using feature buffers containing noise-free data related to the cause
of the problematic illumination. The effect of adding this kind of a
buffer can be seen in Fig. 12.

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Z:12 • Koskela, M. et al

(a) 1-bounce 1 spp (b) 9-bounces 1 spp (c) 1-bounce 1 spp BMFR (d) 9-bounce 1 spp BMFR (e) 9-bounce reference

Fig. 9. An example of how the proposed method handles inputs which have more than one bounce. In this mostly indirect illumination case the 1-bounce 1
spp BMFR is slightly too dark in the green inset since it is very unlikely that the only secondary ray finds its way out from the opening. The 9 bounce 1 spp
BMFR is already close to the reference. However, in the red inset the fireflies on the dark wall next to the opening cause more brightness to bleed to the wrong
side of the corner. In these figures the gamma correction was modified so that the problems standout more clearly.

(a) Proposed algorithm (b) Reference

Fig. 10. If a shadow smaller than the block size is not represented in the fea-
ture buffers, the resulting shadow can be too soft. However, bigger shadows
like the contact shadow of the trash can follow the reference quite closely.

(a) Artifacts can be
seen on the occluded
areas. This is the worst
case since the camera
is moving to the right
with a high speed.

(b) First frame with-
out any accumulated
data (effective 1 spp in-
put) shows the block-
wise nature of the al-
gorithm.

(c) Accumulation and
block place variation
removes the blocky
look from the same pil-
lows as in Fig. 11b

Fig. 11. Different artifacts from the proposed pipeline. The lack of detailed
texturing in the scene makes the artifacts stand out more than usual.

(a) 1 spp (b) The proposed
BMFR

(c) BMFR with
material ID fea-
ture buffer

(d) Reference

Fig. 12. In this example the only difference in the flat surface is its roughness.
Also, albedo is constant for the whole surface but the black background
makes the smoother surface seem darker. The only feature data which is not
constant are the twoworld position axes and BMFR has to construct the final
image from them. In Fig. 12c we add the material ID feature buffer, which
allows BMFR to differentiate between the two materials and, therefore,
improves the results significantly.

2) The proposed algorithm is affected by the same problems as
the previous works that use reprojected temporal data. Since the
reprojection is done to the first bounce intersection world-space
position, e.g., reflections and specular highlights get overblurred.
However, if the material is a completely reflecting mirror, the prob-
lem can be fixed by using a virtual world-space position, but if there
are both a reflecting and a non-reflecting component in the material,
we would have to store and reproject those separately [Zimmer et al.
2015]. Occlusions with the reprojected data also cause the input to
have different amounts of effective spp in different screen space
areas. Different effective spp causes the quality of the output of our
algorithm to be decreased in the occluded areas as can be seen in
Fig. 11a. The visibility of these artifacts on a still frame does not cor-
respond to their visibility on a moving scene, due to how perception
works. The artifacts are stronger in case of fast camera movement
causing larger disocclusions, but those cases are also the ones where

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

Blockwise Multi-Order Feature Regression for Real-Time Path Tracing Reconstruction • Z:13

(a) Frame 15 of the pro-
posed algorithm.

(b) Frame 15 of the ref-
erence.

(c) Frame 25 of the pro-
posed algorithm.

Fig. 13. A scene with a light moving towards the camera shows the temporal
lag caused by the temporal accumulation. With the proposed temporal
accumulation parameters, it takes approximately 10 frames for the proposed
method to produce the most similar lighting.

artifacts get harder to be noticed by the user’s perception [Reibman
and Poole 2007].

Reprojected temporal data also causes lag in the lighting changes
caused by animations. Fig. 13 shows a scene with a moving light.
With the proposed setup (where 20% is from the newest path tracing
samples and 10% is from the newest fitted frame), it takes approxi-
mately 10 frames for the image to converge to a similar appearance
as the reference. However, in a real use case where the 4096 spp
reference is not available, the lag is hard to notice since 10 frames
is not a long time with the frame rates the proposed algorithm is
able to generate. One solution to the temporal lag problem was pro-
vided in a concurrent work [Schied et al. 2018]. However, the same
algorithm cannot be directly used with the proposed work because
it would generate blocking artifacts to areas where illumination
changes drastically.

3) The blockwise nature of the algorithm causes blocking artifacts
visible in Fig. 11b. These can be seen on the first frame when there
is no accumulated data in the input and no block displacement in
BMFR. On the first frame, the problem could be fixed by running the
fitting phase (II) twice with two different grid locations and smoothly
blending the overlapping pixels from one block to another. Moreover,
during the first frames in a completely new camera location it is
hard for the human visual system to perceive artifacts [Reibman and
Poole 2007]. However, the issue can be adequately resolved by using
a fade-in effect over a few frames when the camera is “teleported”
to a completely new location.
We have also tested the proposed method with more than one

bounce of path tracing. An example of this is shown in Fig. 9. The
only limiting factor is that the radiance of fireflies is only propagated
within a single block area, which is defined in screen space. This
limitation is not visible in typical scenes, but it can be a problem in
dedicated test scenes where a path to the light is very unlikely to
be found. However, temporal accumulation after the fitting phase
robustly removes temporal artifacts caused by the fireflies. If the
fireflies are very rare and there is a need for some illumination in
the results, it might be possible to use path space regularization
techniques [Kaplanyan and Dachsbacher 2013].

During prototyping the algorithm, we noticed that using multiple
iterations of BMFR with multiple orders of features, different block
locations, and different block sizes on each iteration, can reduce

the artifacts discussed in this section. However, having a single
iteration with fixed-sized blocks was best suited for our real-time
implementation. Akin to multivariate monomials, the extended set
of feature buffers (1) may also include generic products of the form
F
γj
nj F

γk
nk , however this opportunity has not been investigated for this

work.
One more limitation of our algorithm is that noise in the feature

buffers, due to, e.g., motion blur or depth of field, is visible in the
results. These kinds of effects would require denoising the feature
buffers first. However, in both examples we can compute how much
the data in the feature buffer should be blurred to follow the physi-
cal phenomenon. We plan to address the problem of noisy feature
buffers in future work.

9 CONCLUSIONS
In this article, we introduced Blockwise Multi-Order Feature Regres-
sion (BMFR). In BMFR, different powers of the feature buffers are
used for blockwise regression in path-tracing reconstruction. We
show that a real time GPU-based implementation of BMFR is possi-
ble; the evaluated example implementation processes a 720p frame
in 2.4 ms on a modern GPU, making it 1.8× faster than the previ-
ous state-of-the-art real-time path tracing reconstruction algorithm
with better quality in almost all the used metrics. The code and
the data to reproduce our results is available in the supplementary
material of this article.

The high execution speed of the proposed algorithm is achieved
by augmented QR factorization and the use of stochastic regulariza-
tion, which addresses rank-deficiencies and avoids numerical insta-
bilities without the extra complexity of pivoting. Like in previous
work, our algorithm relies on reprojecting and accumulating previ-
ous frames, which increases the effective samples-per-pixelcount
in our input. Instead of using exponential moving average for the
data accumulation all the time, on the first frames and after an
occlusion we use a cumulative moving average of the samples. Cu-
mulative moving average does not give an excessive weight to the
very first samples and, therefore, reduces artifacts. In our algorithm
we use similar accumulation also after the regression to increase
the temporal stability and to decrease the amount of artifacts in the
results.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers, Petrus Kivi, and
Atro Lotvonen for their fruitful comments. We are also grateful to
Aleksandr Diment for letting us use his workstation for the NVIDIA
Titan X (Pascal) measurements, Dmytro Rubalskyi for his open-
source SVGF implementation used in the comparison, and to the
model makers: Frank Meinl for Sponza (CC BY 3.0, [McGuire 2017]),
Guillermo M. Leal Llaguno for San Miguel (CC BY 3.0, [McGuire
2017]), Christophe Seux for Classroom (CC0), and Wig42 for Living
room (CC BY 3.0, [Bitterli 2016]). Finally, this work was supported by
the funding from TUT Graduate School, Emil Aaltonen Foundation,
Finnish Foundation for Technology Promotion, Nokia Foundation,
Business Finland (funding decision 40142/14, FiDiPro-StreamPro),
Academy of Finland (funding decisions 297548, 310411) and ECSEL
JU project FitOptiVis (project number 783162).

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by/3.0/

Z:14 • Koskela, M. et al

REFERENCES
Anne Aaron, Zhi Li, Megha Manohara, Joe Yuchieh Lin, Eddy Chi-Hao Wu, and C.-

C Jay Kuo. 2015. Challenges in Cloud Based Ingest and Encoding for High Quality
Streaming Media. In Proceedings of the Image Processing.

Timo Aila and Tero Karras. 2010. Architecture Considerations for Tracing Incoherent
Rays. In Proceedings of the High Performance Graphics.

Chakravarty Alla Chaitanya, Anton Kaplanyan, Christoph Schied, Marco Salvi, Aaron
Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruction of
Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder. Transac-
tions on Graphics 36, 4 (2017).

AMD. 2017. RadeonRays SDK. Online. (2017). Available: https://github.com/
GPUOpen-LibrariesAndSDKs/RadeonRays_SDK, Referenced: January 23 2018.

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NováK, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convolu-
tional networks for denoising Monte Carlo renderings. Transactions on Graphics 36,
4 (2017).

Pablo Bauszat, Martin Eisemann, and Marcus Magnor. 2011. Guided Image Filtering
for Interactive High-quality Global Illumination. Computer Graphics Forum 30, 4
(2011).

Benedikt Bitterli. 2016. Rendering resources. (2016). https://benedikt-
bitterli.me/resources/.

Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A Iglesias-Guitián, David
Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted
First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics
Forum 35, 4 (2016).

Peter Burt. 1981. Fast Filter Transform for Image Processing. Computer Graphics and
Image Processing 16, 1 (1981).

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik Lensch. 2010. Edge-
avoiding À-Trous Wavelet Transform for Fast Global Illumination Filtering. In
Proceedings of the High Performance Graphics.

Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoorthi.
2009. Frequency analysis and sheared reconstruction for rendering motion blur.
Transactions on Graphics 28, 3 (2009), 93.

Luke Goddard. 2014. Silencing the Noise on Elysium. In ACM SIGGRAPH 2014 Talks.
Kaiming He, Jian Sun, and Xiaoou Tang. 2013. Guided Image Filtering. Transactions on

Pattern Analysis and Machine Intelligence 35, 6 (2013).
Michael Heath. 1997. Scientific Computing. McGraw-Hill.
Jorge Jimenez, Jose I. Echevarria, Tiago Sousa, and Diego Gutierrez. 2012. SMAA:

Enhanced Morphological Antialiasing. Computer Graphics Forum (Proc. EURO-
GRAPHICS 2012) 31, 2 (2012).

Jorge Jiménez, X Wu, A Pesce, and A Jarabo. 2016. Practical real-time strategies for
accurate indirect occlusion. SIGGRAPH 2016 Courses: Physically Based Shading in
Theory and Practice (2016).

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning
Approach for Filtering Monte Carlo Noise. Transactions on Graphics 34, 4 (2015).

Anton Kaplanyan and Carsten Dachsbacher. 2013. Path space regularization for holistic
and robust light transport. Computer Graphics Forum 32, 2pt1 (2013).

Brian Karis. 2014. High-quality Temporal Supersampling. In ACM SIGGRAPH 2014,
Advances in Real-Time Rendering in Games.

Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels Considered Harmful:
Wavefront Path Tracing on GPUs. In Proceedings of the High Performance Graphics.

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based Optimization for
Adaptive Sampling and Reconstruction. Transactions on Graphics 31, 6 (2012).

Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha
Manohara. 2016. Toward a Practical Perceptual Video Quality Met-
ric. Online. (2016). Available: https://medium.com/netflix-techblog/
toward-a-practical-perceptual-video-quality-metric-653f208b9652, Referenced: Jan-
uary 23 2018.

Yu Liu, Changwen Zheng, Quan Zheng, and Hongliang Yuan. 2017. Removing Monte
Carlo Noise Using a Sobel Operator and a Guided Image Filter. The Visual Computer
34, 4 (2017).

Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz. 2017. An
Efficient Denoising Algorithm for Global Illumination. In Proceedings of the High
Performance Graphics. http://casual-effects.com/research/Mara2017Denoise/

Morgan McGuire. 2017. Computer Graphics Archive. (2017). https://casual-
effects.com/data.

Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering Based on
Weighted Local Regression. Transactions on Graphics 33, 5 (2014).

Bochang Moon, Jose A Iglesias-Guitian, Sung-Eui Yoon, and Kenny Mitchell. 2015.
Adaptive Rendering with Linear Predictions. Transactions on Graphics 34, 4 (2015).

Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016. Adaptive
Polynomial Rendering. Transactions on Graphics 35, 4 (2016).

Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
et al. 2010. Optix: a General Purpose Ray Tracing Engine. Transactions on Graphics
29, 4 (2010).

Amar Patel. 2018. D3D12 Raytracing Functional Spec, v0.09. Microsoft. Available:
http://forums.directxtech.com/index.php?topic=5860.0, Referenced: March 23 2018.

Matt Pharr and Greg Humphreys. 2010. Physically Based Rendering: From Theory to
Implementation (2nd ed.). Morgan Kaufmann.

Amy R Reibman and David Poole. 2007. Predicting packet-loss visibility using scene
characteristics. In Proceedings of the Packet Video.

Gilberto Rosado. 2007. GPU gems 3. Addison-Wesley Professional, Chapter 27. Motion
Blur as a Post-Processing Effect.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R Alla
Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, andMarco
Salvi. 2017. Spatiotemporal Variance-guided Filtering: Real-time Reconstruction for
Path-traced Global Illumination. In Proceedings of the High Performance Graphics.

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estima-
tion for Real-Time Adaptive Temporal Filtering. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 1, 2 (2018), 24.

Carlo Tomasi and Roberto Manduchi. 1998. Bilateral Filtering for Gray and Color
Images. In Proceedings of the Computer Vision.

Eric Veach and Leonidas J Guibas. 1995. Optimally combining sampling techniques
for Monte Carlo rendering. In Proceedings of the Computer graphics and interactive
techniques.

Timo Viitanen, Matias Koskela, Kalle Immonen, Markku Mäkitalo, Pekka Jääskeläinen,
and Jarmo Takala. 2018. Sparse Sampling for Real-time Ray Tracing. In Proceedings
of the GRAPP.

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst.
2014. Embree: A Kernel Framework for Efficient CPU Ray Tracing. Transactions on
Graphics 33, 4 (2014).

Yong Wang, Xiaofeng Liao, Di Xiao, and Kwok-WoWong. 2008. One-way hash function
construction based on 2D coupled map lattices. Information Sciences 178, 5 (2008).

ZhouWang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image Quality
Assessment: from Error Visibility to Structural Similarity. Transactions on Image
Processing 13, 4 (2004).

Ling-Qi Yan, Soham Uday Mehta, Ravi Ramamoorthi, and Fredo Durand. 2015. Fast 4D
sheared filtering for interactive rendering of distribution effects. Transactions on
Graphics 35, 1 (2015), 7.

Lei Yang, Diego Nehab, Pedro V Sander, Pitchaya Sitthi-amorn, Jason Lawrence, and
Hugues Hoppe. 2009. Amortized Supersampling. Transactions on Graphics 28, 5
(2009).

Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler, Wojciech
Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. 2015. Path-space
Motion Estimation and Decomposition for Robust Animation Filtering. 34, 4 (2015).

Matthias Zwicker,Wojciech Jarosz, Jaakko Lehtinen, BochangMoon, Ravi Ramamoorthi,
Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. Recent Advances
in Adaptive Sampling and Reconstruction for Monte Carlo Rendering. Computer
Graphics Forum 34, 2 (2015).

ACM Transactions on Graphics, Vol. X, No. Y, Article Z. Publication date: May 2019.

https://github.com/GPUOpen-LibrariesAndSDKs/RadeonRays_SDK
https://github.com/GPUOpen-LibrariesAndSDKs/RadeonRays_SDK
https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652
http://casual-effects.com/research/Mara2017Denoise/
http://forums.directxtech.com/index.php?topic=5860.0

	Abstract
	1 Introduction
	2 Related work
	3 Reconstruction Pipeline
	3.1 Input
	3.2 Preprocessing
	3.3 Blockwise Multi-Order Feature Regression (BMFR)
	3.4 Feature Fitting with Stochastic Regularization
	3.5 Post-processing

	4 Complexity Analysis
	5 Feature Buffer Selection
	6 Test Setup
	6.1 GPU Implementation
	6.2 Compared Algorithms

	7 Results
	7.1 Objective Quality
	7.2 Subjective Quality
	7.3 Comparison to Noise-Free Direct Lighting
	7.4 Execution Speed

	8 Limitations
	9 Conclusions
	Acknowledgments
	References

