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Noise measurement for raw-data of digital imaging
sensors by automatic segmentation of non-uniform

targets
Alessandro Foi, Sakari Alenius, Vladimir Katkovnik, and Karen Egiazarian, Senior member, IEEE

Abstract�In this paper we present a new method for measur-
ing the temporal noise in the raw-data of digital imaging sensors
(e.g., CMOS, CCD). The method is specially designed to estimate
the variance function which describes the signal-dependent noise
found in raw-data. It gives the standard-deviation of the noise as
a function of the expectation of the pixel raw-data output value.
In contrast with established methods (such as the ISO 15739),

our method does not require the use of a speciÞc target or
a particular calibration. This is possible due to an automatic
segmentation embedded in the data analysis.
We show experimental results for the raw-data from two

different CMOS sensors of commercial cameraphones.

Index Terms�CMOS, CCD, digital imaging sensors, noise
measurement, photon-limited, raw-data, noise modeling.

I. INTRODUCTION
Noise characteristics are one of the critical elements in the

evaluation and choice of digital imaging sensors. However,
noise characteristics are not only used in the comparison
between different sensors (e.g. to determine which sensor is
better), but are also an important parameter in the digital image
processing chain (e.g., digital gain, denoising, interpolation,
color processing, compression) in which the raw-data goes
before the Þnal color image is obtained. Here, by raw-data we
mean the unprocessed digital output of the sensor; roughly
speaking, this output is obtained after the photon-to-electron,
electron-to-voltage, and voltage-to-digit conversions which are
performed within the monolithic sensor. By applying modern
adaptive Þltering algorithms on the raw-data produced by a
cheap and noisy sensor, it is possible to obtain an image of
quality comparable to that expected from a more expensive
sensor. Nevertheless, to fully exploit the potential of these
modern algorithms it is necessary that an accurate noise model
is used when processing the raw-data. Noise modeling for
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digital sensors and their raw-data has been a vivid research
area in the recent years (e.g., [1], [2], [3], [9], [10]).
The above issues become more and more relevant with the

introduction of digital imaging sensors (CMOS, CCD) having
a dramatically increased resolution. This is mainly achieved
by an increase of the pixel density. With the size of each
pixel becoming smaller and smaller, the sensor output signal�s
susceptibility to photon noise becomes greater and greater.
Because of the inherent �photon-counting� process, the

noise in the raw-data is predominantly signal-dependent, with
brighter parts of the image having a larger noise standard-
deviation. Hence, when measuring this standard-deviation
from the recorded data it is necessary to either have uniform
data, or take into account for the data non-uniformity.
In practice it is very difÞcult (sometimes even impossible)

to guarantee uniform recordings. Even with perfectly uniform
targets and illumination, the lens of the camera introduce a
systematic �vignetting� effect where the center of the image
is much brighter (and hence noisier) than the peripheral area.
As a result, the measurements taken under these assumptions
are inherently biased. Unfortunately, the current international
standards ISO 15739 and ISO 14524 [8], [7] and proposed
approaches (e.g., [1], [2], [6]) for measuring the noise assume
known uniform targets and thus provide results that are of a
global nature (i.e., �average� values which are meant to be
valid for the whole sensor). Such global noise estimates are
rough when applied to an individual pixel of the sensor. In
particular they are inadequate for high-quality image process-
ing steps which can take place further in the imaging chain,
e.g. denoising or deblurring. These techniques commonly aim
at solving ill-posed inverse problems and therefore require
accurate pointwise (i.e., pixelwise) knowledge of the noise
characteristics, in order to properly restore the image details.
In this paper we present a new approach for measuring

the temporal noise in the raw-data of digital imaging sensors
(e.g., CMOS, CCD). The method is specially designed to
estimate the curve which describes the standard-deviation
of the noise as a function of the expectation of the pixel
raw-data output. Based on an automatic segmentation of the
recorded images, we separate samples with different expected
output and calculate their standard-deviations. Thus, while
other techniques require a uniform target, in our approach
we beneÞt from the target non-uniformity by simultaneously
estimating the variance function over a large range of output
values.
Because of the automatic segmentation embedded in the
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procedure, our approach has a number of advantages over
current noise measurement standards:
� Our approach does not require a speciÞc target (i.e. a test
chart). In fact, any Þxed target or scene can be used for
performing the noise measurements.

� The target and illumination do not need to be known in
advance, i.e. no calibration is required before performing
the measurements.

� The method is not inßuenced by the focusing or by the
presence of the lens of the camera.

� Illumination does not need to be uniform in space. It is
sufÞcient that the illumination is constant in time.

� The method is applicable without modiÞcations for gray
as well as for color sensors (Bayer pattern).

� Fixed-pattern noise does not inßuence the measured tem-
poral noise.

� With a single experiment we measure a standard-
deviation vs. expectation curve, whereas previous tech-
niques aimed at estimating only a single standard-
deviation value for a given uniform intensity.

Overall the method is simple, easy to implement, and allows
for accurate measurement with much simpliÞed laboratory
equipment. It is thus a cost-effective alternative to other noise
measurement techniques.
In this paper we concentrate on the measurement method-

ology for a given sensor with Þxed parameters. We present
experimental results obtained for two different CMOS sensors
used in Nokia cameraphones and show how a parametric
model can be Þt to the measured curve. We refer the reader to
our publication [5], where a parametric Poissonian-Gaussian
noise model for the raw-data is analytically derived and Þtted
to the measurements (from single or multiple images), with the
model parameters related to the sensors characteristics (e.g.,
analog gain, pedestal, quantum efÞciency). Application of the
proposed model to the imaging chain has been shown, e.g., in
[4].

II. OBSERVATION MODEL
We consider an observation model of the form

z (x) = y (x) + σ (y (x)) ξ (x) , x ∈ X, (1)
where X is the set of the sensor�s active pixel positions,
z is the actual raw-data output, y is the ideal output, ξ is
zero-mean random noise with standard deviation equal to 1,
and σ is a function y, modulating the standard-deviation of
the overall noise component. The function σ (y) is called
standard-deviation function or standard-deviation curve. The
function σ2 (y) is called variance function. Since E {ξ (x)} =
0 we have E {z (x)} = y (x) and std {z (x)} = σ (E {z (x)}).
There are no additional restrictions on the distribution of ξ (x),
and different points may have different distributions.
In practice, z (x) is the recorded value of the raw-data

at the pixel x, and y (x) is the ideal value to be recorded
if no quantization or noise would be present. The (signal-
dependent) signal-to-noise ratio (SNR) of the imaging sensor
can be expressed as SNR(y) = y

σ(y) .
A good estimate of y (x) can be obtained as the pointwise

average of a large enough number N of observations zn (x),

n = 1, . . . , N , of the form (1):
1

N

XN

n=1
zn (x) , zn (x) = y (x) + σ (y (x)) ξn (x) . (2)

III. THE METHOD
The experimental realization of the approach described by

(2) requires that the deterministic terms of the equation are
truly invariant with respect to the replication index n. That
is, the underlying true signal y (x) must not change over
time. In practice this means that during the acquisition process
the camera must not move, the acquisition parameters (e.g.,
exposure, aperture, gain) must be Þxed and the illumination is
constant in time.

A. Acquisition and averaging
Under these conditions, we record a number N of images

in raw-data format. These shots are averaged, to obtain an
approximation z̄ of the noise-free y,

z̄ (x) =
1

N

XN

n=1
zn (x) = y (x) +

σ (y (x))√
N

�ξ (x) , x ∈ X .
(3)

Here �ξ (x) is again some zero-mean noise with unitary vari-
ance. It is recommended to take a large number of images,
so that the factor 1/

√
N in (3) is small. In what follows

we assume that N is large enough and we consider z̄ (x) =
E {z (x)} = y (x), for all x.

B. Segmentation
The average image z̄ is segmented into a number of uniform

regions {S}, or segments. Ideally, within these regions the
value of z̄ (x) should be constant:

S (y) = {x : z̄ (x) = y} .
However, this may lead to uncertain results as there may be
too few (or maybe none) samples, i.e. pixels, that satisfy the
equality z̄ (x) = y. Pragmatically, it is convenient to consider
a larger estimation set of the form

S∆ (y) = {x : z̄ (x) ∈ [y −∆/2, y +∆/2)} ,
where ∆ > 0.
Let y and ∆ be Þxed and denote by xm, m = 1, . . . ,M,

the coordinates of the M pixels that constitute the segment
S∆ (y) , {xm}Mm=1 = S∆ (y). On this segment we have that
the observations (2) satisfy

zn (xm) = y (xm) + σ (y (xm)) ξn (xm) =

= y +∆dn,m + σ (y (xm)) ξn (xm) , (4)
where dn,m ∈ [−1/2, 1/2). It is reasonable to assume that
dn,m are uniformly distributed. Hence, Equation (4) can be
rewritten as

zn (xm) = y +

r
∆2

12
+ σ2 (y (xm))ξ

0
n (xm) , (5)

where ξ0n is again some zero-mean random noise with standard
deviation equal to 1.

C. Measurement of the standard deviation
For any Þxed y we proceed as follows in order to compute

the estimate �σ (y) of σ (y).
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Fig. 1. Experimental setup.

1) Variance for a single image and output value: To
contain memory requirements, the variances are Þrst computed
independently for each shot zn. The variance svarn(y) corre-
sponding to expected output y and shot n is calculated as the
unbiased sample variance estimator on the segment,

svarn(y) =

PM
m=1 (zn (xm)− �zn (y))2

M − 1 , (6)

where
{xm}Mm=1 = S∆ (y) = {x : z̄ (x) ∈ [y −∆/2, y +∆/2)}

and �zn (y) is the mean value of zn over S∆ (y), �zn (y) =
1
M

PM
m=1 zn (xm).

By (5), and assuming that within the segment σ (y (xm))
can be well approximated by σ (y), we obtain

E {svarn(y)} = ∆2

12
+ σ2 (y) . (7)

2) Averaging over the shots: The estimate �σ (y) of the
standard deviation σ (y) is given according to (7) by the
average of the above N estimates:

�σ (y) =

r
1

N

XN

n=1
svarn(y)− ∆

2

12
. (8)

Here we assume that the expectation under the square-root is
non-negative. In practice, one can neglect the extra term due
to ∆ in (7) and (8) by choosing ∆ signiÞcantly smaller than
σ (y). In this case we simply have

�σ (y) =

r
1

N

XN

n=1
svarn(y).

We remark that while the recorded raw-data has a certain
Þxed precision (e.g. 10 bits), the values attained by z̄ are
much denser because of the averaging. Therefore ∆ can be
taken much smaller than the quantization step of the raw-data.
In Section IV we show results obtained for much different
choices of ∆ which demonstrate that the proposed technique
is very stable with respect to this parameter.
3) Standard-deviation curve (variance function): The pro-

cedure described by the previous two steps is repeated for
different values of y. In this way the standard-deviation
curve is found. Typically, one would use discrete values

Fig. 2. One of the acquired shots zn.

y ∈ {∆i, i ∈ N}∩ [min {z̄} ,max {z̄}], which ensures that the
segments are nonoverlapping and hence that the measurements
for different values of y are independent. The estimate of the
variance function is simply �σ2 (y), y ∈ [min {z̄} ,max {z̄}].

IV. EXPERIMENTAL RESULTS
The standard-deviation curves σ (y), as from Equation (1),

have been measured from the raw-data of two different CMOS
sensors used in Nokia cameraphones. We denote them here as
sensor/cameraphone �U� and �V�. They are, respectively, an
older 660×492 (VGA) 1/4" sensor (5.4µm pixel pitch) with
global shutter, and a newer 1296×1040 (1.3 Mpixel) 1/3.3"
sensor (3.3µm pixel pitch) with rolling shutter. Both sensors
have a Bayer pattern color Þlter array (CFA) with red, green,
and blue Þlters (R, G1, G2, and B).

A. Setup
The sensors had not been separated from the phones, which

were held clamped in a vice. We used a non-uniform target
composed by grayscale vertical ramps going from white to
black1. This simple setup is shown in Figure 1. To en-
sure constant-in-time (ßicker-free) illumination, measurements
where taken in a darkroom where the only source of light was
an array of white LED lights powered by stabilized DC power
supplies.
The devices were conÞgured to take multiple shots automat-

ically and without user intervention (as this would introduce
mechanical vibration). A total of 50 shots were taken for
each experiment. In Figure 2 we show an example of the
shots which were taken. Enlarged details of this shot and of
the average image z̄ (3) are shown in Figure 3. The raw-
data had 10-bit precision, which we normalize on the range
[0, 1] dividing by 210=1024. The exposure time, gain, and
illumination were Þxed in such a way that the recordings were
not saturated (i.e., clipped) and thus our raw-data output is

1The target was printed on normal paper using a common ofÞce printer
and then enlarged to A3-size using a copy machine.
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Fig. 3. Enlarged detail of the acquired shot zn shown in Figure 2 and the
corresponding fragment of the image z̄, which is obtained by averaging N
such zns.

Fig. 4. Two segments S∆(y) obtained for ∆=0.01 (left) and ∆=0.0001
(right). The value of y is the same for both segments.

Fig. 5. Enlarged details of the segments S∆(y) obtained for ∆=0.01 and
∆=0.0001, shown in Figure 4. These details correspond to the same enlarged
location shown in Figure 3.

typically concentrated inside the range [0, 0.5]. Furthermore,
because of pedestal offset, the output is always larger than a
certain minimum value, which for the two considered devices
is about 0.05.

B. Segmentation

In Figures 4 and 5 we show examples of a segment S∆ (y)
obtained for ∆ = 0.01 and ∆ = 0.0001. These values are
respectively about ten times and one tenth of the quantization
step 1/1024. Observe that the segment corresponding to the
smaller ∆ is a subset of the other one. It is interesting to ob-
serve that despite the target was composed by vertical ramps,
because of the nonuniform illumination and the vignetting, the
segments do not have a particular horizontal/vertical �shape�.
Especially for small values of ∆ the segments are usually
composed of separated (i.e., disconnected) pixels.

C. Standard-deviation curves

In Figure 6, we show the standard-deviation curves obtained
for ∆ = 0.005, 0.0005, 0.00005. It can be seen that, although
the curve becomes noisier for very small ∆, the three plots are
essentially the same. This demonstrates the accuracy of (7-8)
and the stability of our procedure with respect to the choice of
∆. We remark also that the noisiness of the plot obtained for
∆ = 0.00005 is well compensated by its higher �sampling�
density (there are about 10000 samples in the plot) which
allows for very accurate smoothing or parametric Þtting.
Due to the automatic segmentation, the standard-deviation

vs. expectation curve can been measured using the whole
sensor at once as well as using each color channel separately.
The two approaches are in general equivalent. In Figure 7 we
show the plots obtained separately for each one of the four
color channels (R, G1, G2, and B), whereas the plots shown
in Figure 6 are due to measurements using the whole sensor.
The four color channels exhibit the same behavior shown in
Figure 6.
We note that the sharp vertical drops in the estimated

standard-deviation �σ visible in the plots (e.g., for the blue and
for the red channels in Figure 7(left)) do not correspond to a
real drop in the standard deviation of the noise. Instead, they
are only due to the segments S∆ (y) becoming singletons or
empty sets when y approaches or exceeds the bounds of the
interval [min {z̄} ,max {z̄}]. For empty or singleton segments
S∆ (y), the Equation (6) loses its meaning. Such drops in the
estimated standard-deviation are therefore to be ignored when
analyzing the estimated curve �σ (y).

D. Fitting a parametric model

The following parametric model based on the Poissonian
(photon-limited) nature of the sensor [5] achieves a near-
perfect Þt to the experimentally measured data:

σ (y) = q
√
y − p, qU = 0.0060, pU = 0.050,

qV = 0.0092, pV = 0.021,
(9)

The plots of these functions are shown in Figure 7. We remark
again that the same curve σ (y) Þts equally well all four color
channels. It can be seen that the newer sensor �V� presents a
lower SNR. This can be justiÞed by the increased pixel density.

V. CONCLUSIONS

In this paper we have presented a novel method for the ac-
curate measurement of the standard-deviation of the temporal
noise in the raw-data of digital imaging sensors. The method is
based on an automatic segmentation of the recorded images. It
allows to use non-uniform targets and illumination, thus can be
implemented easily without special calibrated test charts and
lighting. While previous techniques estimate only single value
for the standard deviation for a given uniform raw-data, the
proposed method can measure a complete standard-deviation
vs. expectation curve in a single experiment. The experimental
results obtained by the proposed measurement method show
a near-perfect agreement with an analytically derived noise
model for the raw-data.
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Fig. 6. Standard-deviation curves for the raw-data from CMOS sensor �V� measured for different values of the segmentation parameter ∆=0.005, 0.0005,
0.00005. The curves are calculated using Equation (8) and give an estimate �σ of the standard-deviation of the temporal noise in the raw-data as function of
the expected (i.e., noise-free) output raw-data value y = E{z}.

Fig. 7. Measured standard-deviation curves (and corresponding Þtted model) for the raw-data from CMOS sensor �V� (left) and �U� (center). Plots for the
different color channels (R, G1, G2, B) are drawn in their corresponding colors. The model Þts equally well all color channels. A direct comparison between
the two models (right), shows that for the same expected raw-data values the newer sensor is noisier than the older one.
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