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Abstract. We describe a novel approach to solve a problem of window size (bandwidth) selection for filtering an

image signal given with a noise. The approach is based on the intersection of confidence intervals (ICI) rule and

gives the algorithm, which is simple to implement and nearly optimal in the point-wise mean squared error risk.

The local polynomial approximation (LPA) is used in order to derive the 2D transforms (filters) and demonstrate

the efficiency of the approach. The ICI rule gives the adaptive varying window size and enables the algorithm to

be spatially adaptive in the sense that its quality is close to that which one could achieve if the smoothness of the

estimated signal was known in advance. Optimization of the threshold (design parameter of the ICI) is studied. It is

shown that the cross-validation adjustment of the threshold significantly improves the algorithm accuracy. In

particular, simulation demonstrates that the adaptive transforms with the adjusted threshold parameter perform

better than the adaptive wavelet estimators.
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1. Introduction

A noise removal (de-noising) is one of the important

problems in image processing. Among other

approaches to this problem the local polynomial

approximation (LPA) can be treated as probably one

of the most theoretically justified and well studied

ones. Originally LPA was proposed and developed in

statistics for processing scalar and multidimensional

noisy data. It is a powerful nonparametric technique

which provides estimates in a point-wise manner based

on a mean square polynomial fitting in a sliding

window e.g. [1, 3, 5, 6, 13, 16]. In terms of the signal

and image processing the LPA is a flexible tool to

design 2D transforms with prescribed reproductive

properties with respect to polynomial (smooth)

components of signals. The invariant and variant

optimal window size selection has been studied

thoroughly by many authors. These optimal, in

particular, varying data-driven window size methods

are of special interest for the problems where the piece-

wise smooth approximations are the most natural and

relevant ones. Some image de-noising problems

provide good examples of these cases.

A crucial difference between the nonparametric

LPA estimates and the more traditional parametric

ones, say the polynomial mean squared estimates, is

that the latter are formed as unbiased ones while the

former are biased on the definition and the reasonable

choice of the biasedness controlled by the value of the

window size is of importance. It can be emphasized

that the problem of the optimal window size selection

admits an accurate mathematical formulation in terms

of the nonparametric approach, where the optimal

window size is defined by a compromise between the

bias and the variance of estimation.
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Two main ideas are exploited for adaptive (data-

driven) window size selection. The first one is based

on estimation of the biasedness and the variance of the

estimates of the signal with the corresponding optimal

window size calculation based on theoretical formu-

las. However, the bias depends on the derivatives of a

given signal. Thus, we need to estimate these

derivatives and for this purpose to select auxiliary

window sizes. Actually this sort of methods, known as

`̀ pilot estimates'', is quite complex in implementation

and have quite a few design parameters.

The second alternative idea does not have to deal with

the bias estimation. This group of methods is based on

the quality-of-fit statistics such as the cross-validation,

generalized cross-validation, Cp, Akaike criteria, etc.,

which are applied for direct optimization of the accuracy.

A number of publications concerning the window

size selection problem is very large and growing

quickly. A review on the field or even its brief

analysis is far beyond of the goal of this paper. Here

we give only few references illustrating the basic

progress in different directions.

A successful implementation of the first approach

based on the pilot estimates has been reported by

several authors. An automatic local window size

selector with estimation of the higher order derivatives

of y(x), which are plugged into the local risk

expression, was developed in [3]. The empirical-bias

window size selection [19] uses the estimates at

several window sizes in order to approximate the bias,

and results in quite an efficient adaptive smoother for

estimation of the function and its derivative. The

similar ideas have been exploited in the adaptive

smoothers described in [20].

Most of publications concerning the second

approach are related to a data-based global (constant)

window size selection e.g. [6, 7, 13]. The linear LPA

with the varying window size found by minimization

the so-called `̀ pseudo-mean squared error'' is consid-

ered in [18]. The target point is left out of the averaging

in the pseudo-mean squared error what differs this

method from the standard mean square methods. It is

reported that the proposed pseudo-mean squared error

works better then the local cross-validation [18].

This paper is based on a quite recent new

development. The intersection of confidence intervals

(ICI) rule originally was proposed and developed in

[4] and [8] for de-noising of 1D observations and

shown to be quite efficient in particular for many

distinct applications e.g. [10, 12, 14]. First results on

applications of the ICI rule to image de-noising have

been reported in [9, 15].

This paper presents a systematic development of

the ICI rule for image de-noising including basic

ideas, algorithms, theoretical performance analysis

and simulation results. We introduce adaptive 2D

transforms for smoothing an image intensity function

given with an additive noise. These transforms are

able to produce a piece-wise smooth surface with a

small number of discontinuities in the intensity

function or its derivatives. This allows certain

desirable features of images such as jumps or

instantaneous slope changes to be preserved.

The further paper is organized as follows. In

section 2 the LPA technique is described in details

with theoretical results concerning the accuracy

analysis. The idea and algorithm implementation of

the ICI window size selection is described in section 3

as well as the data-driven adjustment of the threshold

parameter and the multiple window LPA. Simulation,

given in section 4 illustrates a good performance of

the proposed methods as well as some modifications

of the basic algorithms.

2. Local Polynomial Approximation

2.1. Transforms Based on LPA

We start with a discussion of 2D linear transforms

derived on the base of the LPA method.

Suppose that we are given by noisy observations of

the image intensity y(x); y 2 R1; x 2 R2; on the regular

or irregular grid of argument values x(s) � (x1(s);
x2(s)) being two dimensional vectors with components

x1(s) and x2(s) and the parameter s indicating

corresponding sÿ th pixel of the image.

Then, the noisy data can be given as:

z(x) � y(x)� "(x) (1)

where "(x) are independent and identically distributed

(i.i.d.) random Gaussian errors, E["(x)] � 0;
E["2(x)] � �2: It is assumed that y(x) belongs to a

nonparametric class of piece-wise continuous

rÿdifferentiable functions

F r � fjDr
r1; r2

y(x)j � Lr(x) � �Lr; 8 r1 � r2 � rg; (2)
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where D r1� r2
r1; r2

� @ r1� r2

@ r1 x1@ r2 x2
is a differentiation operator and

�Lr is a finite constant.

Our goal is to estimate y(x) depending on the

observations fz(x)g with the point-wise mean squared

error (MSE) risk which is as small as possible.

The LPA of y(x) is applied in the following form.

First, a part of the truncated Taylor series is used in

order to approximate the varying intensity y(x); and

second, this expansion is exploited locally in a

comparatively small area. In fact, the local expansion

is applied in order to calculate the estimate for a single

`̀ central'' pixel only. For the next pixel the calcula-

tions should be repeated. This point-wise procedure

determines a nonparametric character of estimation.

The following criteria function is applied in the

LPA e.g. [1, 3, 6, 13, 16]:

Jh(x) �
X

s

wh(x(s)ÿ x) (z(x(s))ÿ CT�(x(s)ÿ x))2 (3)

�(x) � (�1(x); �2(x); :::; �M (x))T ;

C � (C1;C2; :::;CM )T ; x(s) � (x1(s); x2(s)); (4)

where �(x) is a set of linear independent 2D

polynomials of the powers from 0 to m with �1 � 1.

A total number of these polynomials is equal to

M � C2�m
2 � (2�m)!

2�m! � (2�m) (1�m)
2

. The term `̀ coor-

dinate function'' is sometimes used for �k. The

window wh(x) � w(x=h)=h formalizes the localization

of fitting with respect to the centre x, while the scale

parameter h > 0 determines the size of the window.

The windowing weight wh(x) � w(x=h)=h is a func-

tion satisfying the conventional properties: w(x) � 0;
w(0) � maxx w(x),

R R
w(x1; x2) dx1dx2=1.

A multiplicative window w(x) � w1(x1)w2(x2),

where w1(x1) and w2(x2) are functions of scalar

arguments, is used in many applications. If the window

is rectangular all observations enter in the criteria

function with equal weights . Nonrectangular windows

such as triangular, quadratic, Epanechnikov and so on

[1, 3, 6, 13, 16] usually prescribe higher weights to

observations which are closer to the centre x:
The point-wise LPA insures the reproduction

properties of the estimate with respect to the

polynomial components of y(x). But it should be

emphasized that the LPA estimate of y(x) is not a

polynomial function. This is a principal difference

between the nonparametric LPA and the corresponding

parametric models. For m � 2 a full set of the linear

independent polynomial is of the form

�1 � 1; for m � 0;

�2 � x1; �3 � x2; for m � 1;

�4 � x1x2; �5 � x2
1=2; �6 � x2

2=2; for m � 2; (5)

with M � �2�m�!
2�m! � 6:

Minimizing Jh(x) with respect to C;

Ĉ(x; h) � arg min
C2RM

Jh; (6)

gives ŷ(x) �� Ĉ1(x; h) as an estimate of y(x); and

Ĉl(x; h); l � 2; :::;M ; as estimates of the derivatives

of y(x). For the polynomials (5) these estimated

derivatives are D1
1; 0 y(x); D1

0; 1y(x); D2
1; 1y(x); D2

0; 2 y(x);
D2

2; 0 y(x) respectively. Recall that the first and second

order derivatives (D k1� k2

k1; k2
y(x); 1 � k1 � k2 � 2) are

used as a tool for image segmentation and enhance-

ment. However, in this paper we concern with the

estimation of the intensity function only.

These estimates can be represented in the form of a

linear transform (filter)

ŷ(x; h) �
X

s

g1(x; x(s); h)z(x(s)); (7)

where g1 is a first element of the vector g given by the

equation

g � �ÿ1wh(x(s)ÿ x)�(x(s)ÿ x);

� �
X

s

wh(x(s)ÿ x)�(x(s)ÿ x)�T (x(s)ÿ x): (8)

It can be verified that for any polynomial y(x) of the

power m the estimate (7) is accurate. In particular, for

the polynomials (5) it means thatX
s

g1(x; x(s); h)�k(x(s)) � �k(x);

for k � 1; :::;M ; 8x: (9)

It shows that the transform with the weight g1 has

an accurate reproductive properties for the 2D

polynomial components of the intensity up to the

power m � 2.

The linear transform (7)-(8) can be applied to data

given on any regular or irregular grids, in particular, to

data with lost observations and for data interpolation

problem when x does not belong to the grid fx(s)g. It
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is assumed in the formulas (7)-(8) that the summation

is always performed within boundaries of the image

frame.

For the regular infinite grid and x belonging to this

grid the linear estimators (7)-(8) can be written as a

homogeneous (stationary) transform:

ŷ(x; h) �
X

s

g1(x(s); h) z(x� x(s)); (10)

where g1 is a first element of the vector g

g � �ÿ1wh(x(s))�(x(s));

� �
X

s

wh(x(s))�(x(s))�T (x(s)): (11)

Then, the equations (9) for the polynomials (5)

have a form of moment restrictions on the weight

function g1X
s

g1(x(s); h) � 1;
X

s

g1(x(s); h)x1(s) � 0;X
s

g1(x(s); h)x2(s) � 0;X
s

g1(x(s); h)x1(s)x2(s) � 0;X
s

g1(x(s); h)x2
1(s) � 0;X

s

g1(x(s); h)x2
2(s) � 0: (12)

An important difference between the estimates (7)-

(8) and (10)-(11) is that the latter assumes that a number

of observations in the estimate does not depend on the

location of x in the image. As a result the function z(x)

should be defined beyond the boundaries of the image

frame. Naturally, the accurate polynomial fitting is not

fulfilled in this case for pixels in a neighborhood of

the boundaries of the frame. The estimate in the form

(7)-(8) is free from this boundary effect.

Actually, the design of the weights g1 by the

formulas (7)-(8) or (10)-(11) is quite of a general

nature. Say, we can start from the zero order

approximation with the only one coordinate function

�1 � 1. In this case the fitter gives an approximation

by a constant into the sliding window. It is able to

guaranty the accurate unbiased reproduction only for

the constant component of the intensity. Further, the

linear functions �2 � x1 and �3 � x2 can be added to

�1 � 1 as elements of the vector � � (�1; �2; �3)T :

The corresponding transform is able to obtain the

accurate reproduction of constant and linear on x1 and

x2 components of the intensity. As a next step, the

cross term �4 � x1x2 can be involved into the LPA by

including in � � (�1; �2; �3; �4)T : Further, one or

both of the quadratic functions �5 � x2
1=2; �6 � x2

2=2

can be used in the LPA: Thus, it is not necessary to

use a full set of the coordinate functions �k of some

particular power m. The considered design of the

transform can be used in order to obtain desirable

properties with respect to any components of the

intensity function. Naturally, non-polynomial coordi-

nate functions can be applied in the local approxima-

tion in a straightforward manner.

The linear estimators (7)-(8) and (10)-(11) have a

very long prehistory e.g. [1, 3, 5, 6, 13, 16]. They are

a very popular tool in statistics and signal processing

with application to a wide variety of the fields for

smoothing, filtering, differentiation, interpolation and

extrapolation.

2.2. Accuracy of the LPA

It is well known that window size selection is a crucial

point of the efficiency of the local estimators. When h

is relatively small, the LPA gives a good approxima-

tion of y(x) but then fewer data are used and the

estimates are more variable and sensitive with respect

to the noise. The best choice of h involves a trade-off

between the bias and variance, which depends on the

order of the derivatives being involved in the LPA, a

sample period, the noise variance, and values of the

derivatives of y(x) beyond the order used in the LPA:
The estimation error can be represented as follows

e(x; h) � y(x)ÿ ŷ(x; h)

� y(x)ÿ
X

s

g1(x; x(s); h)z(x(s))

� E(e(x; h))� e0(x; h); (13)

w h e r e E(e(x; h)) � y(x) ÿPs g1(x; x(s); h) y(x(s))

=
P

s g1(x; x(s); h) [y(x)ÿ y(x(s)] and e0(x; h) � ÿPs

g1(x; x(s); h) "(x(s)) are the bias and random compo-

nent of the estimation error.

The Taylor series of the power r with the

residual terms in Lagrangian's form is used for the

difference y(x)ÿ y(x(s)) :
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y(x)ÿ y(x(s)) � S1(s)� S2(s);

S1(s) �
Xrÿ1

k1� k2 � 1

1

k1!k2!
[x1 ÿ x1(s)]k1 [x2 ÿ x2(s)]k2

D k1� k2

k1; k2
y(x);

S2(s) �
X

k1� k2�r

1

k1!k2!
[x1 ÿ x1(s)]k1 [x2 ÿ x2(s)]k2

Dr
k1; k2

y(�sx(s)� (1ÿ �s) x);

0 � �s � 1: (14)

Assume that � in (7)-(8) is a full set of 2D

polynomials of the power m and r � m� 1: Then,

according to (9),X
s

g1(x; x(s); h)S1(s) � 0

and the bias is defined by the (m� 1)ÿ th derivatives

D m� 1
k1; k2

y.

Substituting (14) into the formula for the bias-error,

we obtain

jE(e(x; h))j � �Lm� 1

X
k1� k2 �m� 1

1

k1!k2!X
s

jg1(x; x(s); h)jjx1 ÿ x1(s)jk1 jx2 ÿ x2(s)jk2 ;

where according to (2) we used that jD m� 1
k1; k2

yj � �Lm� 1.

The variance of the random components is given

by the equation

var(x; h) � E(e0(x; h)2) � �2
X

s

(g1(x; x(s); h))2: (15)

In order to derive the formulas which provide a clear

dependence of the accuracy on the window width

parameter h we assume that the sampling period � is

small, �! 0, and the 2D sampling grid is regular.

The sums in the all above formulas can be

transformed into integrals, and, after some manipula-

tions, we arrive to the following expressions:

ŷ(x; h) �
Z Z

g1(u)y(x� hu) du1du2;

g � �ÿ1w(u)�(u);

� �
Z Z

w(u)�(u)T (u) du1du2;

g � (g1; :::; gM )T ; u � (u1; u2): (16)

Then, the formulas for the bias and variance can be

given in the explicit analytical form

jE(e(x; h))j � h m� 1L m� 1(x)A;

A �
X

k1� k2 �m� 1

1

k1!k2!

Z Z
jg1(u)jju1jk1 ju2jk2

du1du2;

var(x; h) ' �2�2

h2
B;B �

Z Z
jg1(u)j2du1du2: (17)

Thus, the point-wise mean squared risk r(x; h) in

asymptotic with a small � can be represented as

follows

r(x; h)�� E(e(x; h))2 � �!2(x; h)��2�2

h2
B�� �r(x; h);

�!(x; h) � hm� 1Lm� 1(x)A; (18)

where �!(x; h) denotes the upper bound of the bias.

Minimizing on h the upper bound �r(x; h) of the

mean squared risk gives for the ideal values of the

window size and the risk upper bound:

h�(x) � �2 �2B

A2(Lm� 1(x))2

2

� �1=(2m� 4)

; 
2 � 1

m� 1

(19)

and

�r�(x) � �r(x; h�(x)) � var�(x)(1� 
2);

var�(x) � var(e0(x; h�(x))); 
 � �!�(x)=std�(x);

�!�(x) � �!(x; h�(x)); std�(x) �
���������������
var�(x);

p
�20�

where the constant 
 which is not depending on x;
shows a proportion between the upper bound of the

bias and standard deviation of the estimation error at

the ideal window size h�(x):
The formulas (19) and (20) demonstrate that the

ideal window size h�(x) depends on the (m� 1)ÿ th

derivatives of y(x) and the ideal variance-bias trade-off

is achieved when the ratio between the bias and

standard deviation !�(x)=std�(x) is equal to 
. It can

be seen that

�!(x; h)
< 
 � std(x; h) if h < h�

> 
 � std(x; h) if h > h�

�
(21)

In what follows this inequality is used in order to

test the hypotheses: h >
< h�:
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3. Adaptive Window Size Selection

3.1. The idea of the ICI

The estimation error of the LPA can be represented in

the form

e(x; h)j j � y(x)ÿ ŷ(x; h)j j � �!(x; h)� e0(x; h)
�� ��; (22)

where �!(x; h) is the upper bound of the estimation bias

and e0(x; h) is a random error with the probability density

N (0; std 2(x; h)): Then e0(x; h)
�� �� � �1ÿa=2 � std(x; h)

holds with the probability p � 1ÿ a, where �1ÿa=2 is

(1ÿ a=2)ÿ th quantile of the standard Gaussian

distribution, and with the same probability

e(x; h)j j � �!(x; h)� �1ÿa=2std(x; h): (23)

It follows from (21) that the inequality (23) can be

weakened to

e(x; h)j j � (
 � �1ÿa=2) std(x; h): (24)

Now let us introduce a finite set of window size:

H � fh1 < h2 < :::: < hJg;
starting with a quite small h1; and, according to (24),

determine a sequence of the confidence intervals D� j)
of the biased estimates as follows

D( j) � [ŷ(x; hj)ÿ ÿ � std(x; hj); ŷ(x; hj)� ÿ � std(x; hj)];

(25)

where

ÿ � 1������������
m� 1
p ��1ÿ a=2 (26)

is the threshold of the confidence interval.

Then for h � hj (24) is of the form

y(x) 2 D( j); (27)

and we can conclude from (23) and (24) that

while hj < h� holds for h � hj; 1 � j � i; all of the

intervals D( j); 1 � j � i; have a point in common,

namely, y(x).

In the opposite case, when the intersection of the

confidence intervals is empty it indicates that hj > h�:
Thus, the intersection of the confidence intervals can

be used in order to verify the inequalities (21).

The following is the ICI statistic, which is used

in order to test the very existence of this common

point and in order to obtain the adaptive window size

value:

Consider the intersection of the intervals D( j);
1 � j � i; with increasing i, and let i� be the largest

of those i for which the intervals D( j); 1 � j � i;
have a point in common. This i� defines the

adaptive window size and the adaptive LPA estimate

as follows

ŷ�(x) � ŷ(x; h�(x)); h�(x) � hi� : (28)

3.2. Algorithm

The following algorithm implements the procedure

(28). Determine the sequence of the upper and lower

bounds of the confidence intervals D(i) as follows

D(i) � [Li;Ui];

Ui � ŷ(x; hi)� ÿ � std(x; hi);

Li � ŷ(x; hi)ÿ ÿ � std(x; hi); (29)

where ÿ is given by (26).

Let

�Li � 1 � max[�Li; Li�1];U i�1 � min[ U i;Ui�1];

i � 1; 2; :::; J ; �L1 � L1;U1 � U1 �30�

Figure 1. Graphical illustration of ICI rule.
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then the adaptive window length h�i is the largest i

when

�Li � U i (31)

is still satisfied. This i� is the largest of those i for

which the confidence intervals D(i) have a point in

common as it is discussed above.

We wish to emphasize that this window size ICI

selection procedure requires a knowledge of the

estimate and its variance only.

The ICI rule is graphically illustrated in Fig. 1,

where the vertical lines with arrows show the

successive intersections of the confidence intervals

(1, 2), (1, 2, 3), and (1, 2, 3, 4). Assuming that the

intersection with the forth confidence interval (corre-

sponding h � h4) is empty, we obtain the `̀ optimal''

adaptive window size h� � h3:

3.3. Adjustment of the Threshold ÿ

The threshold parameter ÿ in (29) plays a crucial role in

the performance of the algorithm. Too large or too small

ÿ results in oversmoothing and undersmoothing data.

Let us present some figures for ÿ following from

the theoretical analysis. Assuming a � 0:05 or 0:01,

then �1ÿa=2 � 2 or 3 respectively, we obtain for the

threshold:

ÿ � 3:0; for p � 0:05;

4:0; for p � 0:01;

�
for m � 0;

ÿ � 2:7; for p � 0:05;

3:7; for p � 0:01:

�
for m � 1;

Remind that the formula for 
 (19) determining the

optimal threshold ÿ is obtained for the asymptotic as

�! 0 and provided that the intensity y(x) is smooth

enough in the neighborhood of x, i.e. the first and

second order derivatives exist respectively when the

zero order (m � 0) or the first order (m � 1) LPA is

applied. In practice, the smoothness of y(x) can not be

guaranteed for every x and � can be not small.

Another uncertain point concerns the confidence level

a and quantile �1ÿa=2 which are used in calculations of

the threshold ÿ. Thus, we may conclude, that there are

ambiguities, which influence a selection of the thresh-

old and these ambiguities cannot be resolved in terms

of the theoretical analysis only. However, the threshold

ÿ is a natural invariant design parameter of the

algorithm, which can be used in order to refine the

algorithm and to adjust it to the available observations.

We produced a number of Monte-Carlo simulation

experiments in order to verify a role of ÿ: In

particular, the MSE of de-noising is minimized on ÿ
in every Monte-Carlo simulation run. The optimal

values of ÿ found in this way are random but have

very small variations. Actually, it means that these

optimal values of ÿ depend on statistical properties of

the noise but not particular samples used in the Monte-

Carlo runs. These optimal ÿ are quite robust with

respect to random noise components of observations.

The cross-validation (CV ) is one of the popular tools

developed in quality-of-fit statistics for model selection

and adjustment e.g. [7]. For the linear estimator in the

form (7) the CV loss function can be represented as a

weighted sum of squared residuals e.g. [8]:

ICV �
X

s

zs ÿ ŷ(x(s); h�(x(s)))

1ÿ g1(x(s); x(s); h�(x(s)))

� �2

: (32)

Thus, the procedure (29)-(31) is assumed to be

repeated for every ÿ 2 G; G � fÿ1; ÿ2; :::ÿNG
g; and

ÿ̂ � arg min
ÿ2G

ICV (33)

gives the adjusted threshold parameter value.

The cross-validation in the form (32) presents quite

a reasonable and efficient selector for ÿ. Our attempts

to use instead of the cross-validation another quality-

of-fit statistics, in particular the CP, Akaike criteria

and its modifications (see e.g. [7]), which are different

from ICV only by the used weights of the residuals,

have not shown an improvement in accuracy.

The adjusted adaptive LPA estimation consists of

the following basic steps:

1. Set ÿ � ÿl, l � 1; 2; :::;NG and x � x(s); s � 1;
2; ::;N :

2. For h � hi, i � 1; :::; J ; calculate the estimates

ŷ(x(s); h), the adaptive window size h�(x(s)) and

the estimate ŷ(x(s); h�(x(s))):
4. Repeat Step 2 for all x(s), s � 1; 2; ::;N ; and ÿl;

l � 1; 2; :::;NG:
5. Find ÿ̂ from (33) and select estimates

ŷ(x(s); h�(x(s)) corresponding to ÿ̂ as the final

ones.
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The standard deviation � used in std(x; h) is estimated

by

�̂ � fmedian( zs ÿ zsÿ1j j :
s � 2; ::;N )g=(

���
2
p
� 0:6745): (34)

The average 1
N ÿ 1

PN
n� 2 (zs ÿ zsÿ 1)2 could also be

applied as an estimate of �2. However, we prefer a

median (34) as a robust estimate.

3.4. Multiple Window Estimation

Different ideas can be used for a design of the varying

window for processing of 2D image signals. The

simplest and standard one assumes that a symmetric

square window is applied for every pixel and the size

of the window is the only varying parameter to be

found.

A more complex approach assumes that the

varying window is composed from a number of

separate segments, say from four quadrants shown in

Figure 2. The centre of the window is the initial point

of the Cartesian coordinate system (0; 0). Each

segment is a square covering a part of the correspond-

ing quadrant. It is assumed that this initial point (0; 0)

is the centre of the LPA estimate for each square

segment. The sizes of these squares are the parameters

of the combined window. The ICI rule is used for

independent selection of the sizes of these separate

four windows. There are a number of ways to fuse

estimates obtained for the separate window segments

into the one final estimate.

Some of our simulation results presented in this

paper are obtained for the following final estimate:

ŷ(x) �
X

j� [1; 2; 3; 4]

kjŷj(x; h
�
j (x));

kj �
stdÿ2

j

stdÿ2
; std2 �

X
j� [1; 2; 3; 4]

std2
j ; (35)

where ŷj(x; h
�
j (x)) are the estimates with the ICI rule

adaptive window size, j � [1; 2; 3; 4]; obtained

respectively for the windows 1; 2; 3; 4 in Figure 2.

Further kj and stdj are the weights and the standard

deviations of these estimates ŷj(x; h
�
j (x)). In the

estimate (35) we use a linear fusing of the estimates

with the inverse standard deviations of the estimates

as weights. Similar multiple combined window

estimates have been applied in [4] and [8] for 1D

function estimation.

4. Algorithms and Simulation Results

The ICI rule for window size selection and the

multiple window estimates introduced in Section 3

define a basic algorithm developed for noise reduc-

tion. A number of modifications of this algorithm has

been developed and studied. These modifications use

different methods in order to form the combined

window, special corrections of the adaptive window

size given by the ICI rule and the different estimation

methods applied to the data in these varying windows.

In particular, an adaptive size and shape window

growing pixel-by-pixel using the ICI rule is proposed

in [2]. In this paper the ICI rule is used for the point-

wise varying window size segmentation of the image

only, while the orthogonal transforms estimators (e.g.

wavelet and discrete cosine transform (DCT )) differ-

ent from the LPA are applied for de-noising in this

varying size segments.

The median filters equipped with the ICI for

the varying window size selection are reported in [11,

14].

It was noticed that the ICI adaptive window sizes,

in particular for small ÿ; can be corrupted by spikes

which erroneously isolate small values to the window

sizes [8]. The preliminary filtering of h�j (x) considered

as a function of x, say by a simple median filter, is

able to improve the quality of de-noising.

Figure 2. Four quadrant windows 1, 2, 3 and 4 used for directional

window size selection by the ICI rule.
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In this section we present simulation results which

illustrate the efficiency of the ICI rule and give an

insight into behavior of the estimates. We consider

also some modified versions of the basic algorithm.

1. Let us start from a simple binary image. Figure

3 shows a true image, noisy image and de-noised

image. The basic LPA transform with m � 0 and

ÿ � 4:0 is used. The adaptive window sizes for

windows 1, 2, 3 and 4 are given in Figure 4. Small

and large window sizes are shown there by black and

white, respectively. Isolated black points in Figure 4

are spikes corresponding to random small window

sizes given by the ICI rule. It deserves to be

mentioned that these isolated spikes have different

locations into four different windows and do not

influence the final de-noised image shown in Figure 3.

Actually these spikes can be eliminated by increasing

the value of ÿ. However, it results in increasing of the

value of the root mean squared error (RMSE).

Presenting Figure 4 we emphasize that the

obtained window sizes actually correspond to the

intuitively clear behavior of the varying window size

relevant to the smoothing of the data if the true image

is known. Thus the window sizes delineate the true

image of the square and the variations of the window

sizes provides a shadowing of the image from

different sides of the image in full agreement with

the directional windows used for smoothing (see

Figure 2).

2. Now let us demonstrate a different algorithm of

using the same ICI rule. The developed algorithm

comprises of the following two parts. The first part is

applied for a point-wise image segmentation. This

segmentation assumes that the LPA with ICI rule is

used for every pixel in order to find the adaptive sizes

of four directional rectangular windows as shown in

Figure 2. As a result, every pixel can be an entry of

many different estimates obtained for adaptive vary-

ing size windows with different centers. The second

part of the algorithm assumes that the DCT transform

filtering [2] is applied for every of these adaptive size

windows. All obtained estimates are accumulated in a

buffer and averaged in order to produce the final

estimate for every pixel.

Experiments were performed on the test image

`̀ Cameraman'' (8 bit gray-scale 256� 256 image)

corrupted by different types of noise. The results are

compared with the wavelet transform based (Haar,

Symmlet, Coiflet, Translation Invariant [17]) and

Wiener filters. The new algorithm showed a valuable

signal-to-noise ration (SNR) improvement (more than

4-5 dB) for most of the cases. Some illustrative

images are given in Figure 5. Figure 5a,b show the

original and noisy image, while the DCT estimate

described above is given in Figure 5d. The RMSE

values show a valuable original noise reduction.

The visual quality is quite acceptable for this level of

the noise. In Figure 5c we show as an intermediate

results the filtering obtained from the zero order

LPA (sample averaging). The estimates obtained

for four adaptive varying windows are averaged with

the weights reciprocal to the variances of these

True Image Noisy Image,    σ=0.22063 Estimate, RMSE=0.11737

Figure 3. True image, noisy image and denoised image. The basic LPA filter with m � 0 and ÿ = 4.0.
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estimates. Figure 6 shows the varying adaptive

window sizes obtained respectively for the windows I,

II, III and IV (Figure 2, hk � 2k ; k � 0; 1; :::; 6). Here

black and white areas correspond, respectively, to

small and large window sizes. Again, the adaptive

window sizes delineate contours of the image and

demonstrate a very reasonable performance of the ICI

rule as a window size selector.

Let us discuss on a role of the threshold ÿ.

Simulation with

ÿ � 1:5; 2:0; 2:5; 3:0; 3:5; 4:0 (36)

was produced with using DCT transform filtering and

ICI window size selection as it is described in Section

III. Resulting RMSEs are obtained

RMSE � 0:0806; 0:0605; 0:0706; 0:0811;

0:0954; 0:1102; (37)

respectively. Thus, the best performance with

RMSE � 0:0605 was achieved for ÿ � 2:0: It is the

ideal result as it assumes that the true image, used for

RMSE calculation, was known. Comparison of RMSE

values shows that the improvement up to 5 dB can be

obtained by ÿ optimization.

The image presented in Figure 5d is given for the

value of the threshold ÿ � 2:5 obtained by the CV

adjustment of ÿ as it is described Section 3. The grid

(36) was used in the optimization problem (33). This

result is quite close to the optimal ÿ � 2:0. It is

well known that an improvement of qualitative

criteria, such as RMSE, does not guaranty a

visual improvement of images. However, the simula-

tion confirms that in terms of this sort of criteria

the CV can be applied for the adjustment of the

de-noising algorithms with varying data-driven

window sizes.

3. Here we consider the DCT transform filtering

equipped with varying adaptive window size. Thus,

we apply the DCT transform for image de-noising

instead of the LPA transform. Further, we apply it in

the ICI rule for the varying window size selection.

The latter is done by using in (25) the standard

deviation std(x; hj) of the DCT transform. More

details on this algorithm as well as its statistical

justification can be found in [2].

Adapt Win IVAdapt Win III

Figure 4. Adaptive window sizes for windows I, II, III and IV. The

LPA filter with m = 0 and ÿ = 4.0. Black and white correspond to

small and large window sizes respectively. Isolated black points are

spikes in the window size corresponding to random small window

sizes by the ICI rule.

Adapt Win I Adapt Win II

c)

Noisy image,    σ=0.24975

b)

Figure 5. a) True image, b) Noisy image, c) LPA denoising, d)

DCT denoising with ICI adpative window sizes.

True image

a)

DCT den, RMSE=0.070572

d)

LPA den, RMSE=0.10265

c)
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Results of the local adaptive DCT filtering as well as the

filtering with the ideal fixed window size DCT transform

(5� 5) are presented in Figure 7. The `̀ Montage'' image,

composed from different types of subimages, is used in

these experiments. RMSE of the filtered signal is equal to

0:028 and 0:037 for the adaptive varying and ideal fixed

window size filters, respectively. The filter with the

varying window size yields better resolution of details as

well as less value of RMSE.

Table 2 below presents accuracy results obtained

for this montage image by different filters. We

compare the local DCT filters considered above

versus the Wiener filter and different wavelet based

filters. All accuracy results are in favor of the local

DCT with adaptive varying window size.

5. Conclusion

A novel approach to solve a problem of varying

adaptive window size selection for filtering a noisy

image is presented. The LPA is used in order to

demonstrate the efficiency of the approach, while a

possible development to another linear and nonlinear

filters (transforms) can be given. The algorithm is

simple to implement and requires calculation of the

estimates and their standard deviations for a set of the

window size values. The adaptive transform is built as

J parallel filters, which are different only by the

window size hj; j � 1; 2; :::; J ; and the selector, which

determine the best window size h�(x(s)) and the

corresponding estimate ŷ(x(s); h�(x(s))) for every

pixel x(s): This selector uses the ICI statistic. In can

be proved in a similar way as it is done in [4] for 1D

regression de-noising, that the adaptive algorithm is

Opt win IVOpt win III

Opt win IIOpt win I

Figure 6. Adaptive window sizes obtained by ICI with ÿ = 2.5.

Figure 7. True `̀ Montage'' image; noisy image; the estimate with

the varying adaptive window size (ÿ = 2.0); the estimate with the

fixed ideal size window.

Table 2. Comparative results

Used Filter RMSE MAE

Local DCT with adaptive transform size 0.0281 0.0191

Local DCT with ideal transform size 0.0372 0.0211

Wiener Filter(5x5 ) 0.0408 0.0274

Wavelet Package Haar 0.0585 0.0444

Wavelet Package 8 0.0464 0.0310

Wavelet PO Haar (4 levels) 0.0567 0.0411

Wavelet PO 8 (4 levels) 0.0693 0.0485

Wavelet TI Haar (5 levels) 0.0317 0.0205

Wavelet TI 8 (5 levels) 0.0365 0.0261

RMSE=Root Mean Square Error,

MAE=Mean Absolute Error,

PO= Periodic, TI= Translation invariant
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nearly optimal in the point-wise risk for estimating the

signal and its derivatives.

In simulation the ICI adaptive window size

algorithms demonstrate an improved performance

as compared with their nonadaptive window size

counterparts.
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