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ABSTRACT
We propose an e¤ective video denoising method based on
highly sparse signal representation in local 3D transform
domain. A noisy video is processed in blockwise manner
and for each processed block we form a 3D data array that
we call �group� by stacking together blocks found similar
to the currently processed one. This grouping is realized
as a spatio-temporal predictive-search block-matching, sim-
ilar to techniques used for motion estimation. Each for-
med 3D group is �ltered by a 3D transform-domain shrink-
age (hard-thresholding and Wiener �ltering), the result of
which are estimates of all grouped blocks. This �ltering�
that we term �collaborative �ltering�� exploits the correla-
tion between grouped blocks and the corresponding highly
sparse representation of the true signal in the transform do-
main. Since, in general, the obtained block estimates are
mutually overlapping, we aggregate them by a weighted aver-
age in order to form a non-redundant estimate of the video.
Signi�cant improvement of this approach is achieved by us-
ing a two-step algorithm where an intermediate estimate is
produced by grouping and collaborative hard-thresholding and
then used both for improving the grouping and for applying
collaborative empirical Wiener �ltering. We develop an e¢ -
cient realization of this video denoising algorithm. The ex-
perimental results show that at reasonable computational cost
it achieves state-of-the-art denoising performance in terms of
both peak signal-to-noise ratio and subjective visual quality.

1. INTRODUCTION

Many video denoising methods have been proposed in the
last few years. Prominent examples of the current de-
velopments in the �eld are the wavelet based techniques
[1, 2, 3, 4, 5]. These methods typically utilize both the
sparsity and the statistical properties of a multiresolution
representation as well as the inherent correlations between
frames in temporal dimension. A recent denoising strategy,
the non-local spatial estimation [6], has also been adapted
to video denoising [7]. In this approach, similarity between
2D patches is used to determine the weights in a weighted
averaging between the central pixels of these patches. For
image denoising, the similarity is measured for all patches in
a 2D local neighborhood centered at the currently processed
coordinate. For video denoising, a 3D such neighborhood
is used. The e¤ectiveness of this method depends on the
presence of many similar true-signal blocks.

Based on the same assumption as the one used in the
non-local estimation, i.e. that there exist mutually similar
blocks in natural images, in [8] we proposed an image de-
noising method. There, for each processed block, we perform
two special procedures � grouping and collaborative �lter-
ing. Grouping �nds mutually similar 2D blocks and then
stacks them together in a 3D array that we call group. The
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bene�t of grouping highly similar signal fragments together
is the increased correlation of the true signal in the formed
3D array. Collaborative �ltering takes advantage of this in-
creased correlation to e¤ectively suppress the noise and pro-
duces estimates of each of the grouped blocks. We showed
[8] that this approach is very e¤ective for image denoising.

In this paper, we apply the concepts of grouping and
collaborative �ltering to video denoising. Grouping is per-
formed by a specially developed predictive-search block-
matching technique that signi�cantly reduces the compu-
tational cost of the search for similar blocks. We develop
a two-step video-denoising algorithm where the predictive-
search block-matching is combined with collaborative hard-
thresholding in the �rst step and with collaborative Wiener
�ltering in the second step. At a reasonable computational
cost, this algorithm achieves state-of-the-art denoising re-
sults in terms of both PSNR and visual quality. This work
generalizes the denoising approach from [8] and improves on
the video denoising algorithm proposed in [9].

2. GROUPING AND COLLABORATIVE
FILTERING FOR VIDEO DENOISING

The concepts of grouping and collaborative �ltering are both
extensively studied in [8]. Therefore, in this section we
only give a general overview in the context of video de-
noising. A noisy video signal is processed in block-wise
manner (processed blocks can overlap), where the currently
processed block is denominated reference block. For each ref-
erence block, grouping is performed followed by collaborative
�ltering.

Analogously to [8], we realize grouping by block-
matching, a procedure that tests the similarity between the
reference block and ones that belong to a prede�ned search
neighborhood. The similarity is typically computed as the
inverse of some distance (dissimilarity) measure. The dis-
tance that we adopt in the sequel is the `2-norm of the
di¤erence between two blocks. Given the nature of video,
the search neighborhood is a 3D domain that spans both
the temporal and the two spatial dimensions. In this work,
we propose to search for similar blocks by predictive-search
block-matching. The peculiarity of this technique, fully ex-
plained in Section 4, is the adoption of data-adaptive spatio-
temporal 3D search neighborhoods. They are adaptive to
similarities between and within the frames, and thus to mo-
tion in the video. It allows for a signi�cant complexity re-
duction as compared with full-search in non-adaptive neigh-
borhoods.

In [8] we demonstrated that transform-domain shrink-
age can be utilized as an e¤ective realization of collaborative
�ltering. It comprises three steps; �rst, a 3D transform is ap-
plied on a group to produce a highly sparse representation
of the true signal in it; second, shrinkage (e.g., hard thre-
sholding or Wiener �ltering) is performed on the transform
coe¢ cients; and third, an inverse 3D transform produces es-
timates of all grouped blocks. By exploiting the similarity
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among grouped blocks, the transform produces a sparse rep-
resentation of the true signal in the transform domain. This
enables the subsequent shrinkage to e¢ ciently attenuate the
noise and at the same time to preserve the most signi�cant
portion of the true-signal spectrum.

After performing grouping and collaborative �ltering for
each reference block, a collection of overlapping blockwise
estimates is obtained. This collection forms a redundant
estimate of the true signal. In order to form a non-redundant
estimate, the blockwise estimates need to be aggregated. As
in [8], we propose aggregation by weighted averaging where
the weights are inversely proportional to the squared `2-norm
of the shrunk groups�spectra and thus loosely reciprocal to
the total variance of each �ltered group.

Using the above procedures, we develop a two-step video-
denoising algorithm whose structure is analogous to that of
the image-denoising algorithm [8]. The �rst step produces
a basic (intermediate) estimate of the video signal by ap-
plying the proposed denoising scheme using grouping and
collaborative hard-thresholding. The second step uses the
basic estimate to improve the denoising in the following two
aspects. First, grouping is performed within the basic es-
timate rather than within the noisy video, and second, the
hard-thresholding is replaced by empirical Wiener �ltering
that uses the spectra of groups from the basic estimate.

3. ALGORITHM

We consider an observed noisy video z (x) = y (x) + � (x),
where y is the true video signal, � (�) � N

�
0; �2

�
is an i.i.d.

Gaussian noise sample and x = (x1; x2; t) 2 X are coordi-
nates in the spatio-temporal 3D domain X � Z3. The �rst
two components (x1; x2) 2 Z2 are the spatial coordinates
and the third one, t 2 Z, is the time (frame) index. The
variance �2 is assumed a priori known. The proposed two-
step denoising algorithm is presented in the right column of
this page. It is also illustrated in Figure 1.

4. GROUPING BY PREDICTIVE-SEARCH
BLOCK-MATCHING

A straightforward approach is to use a �xed-size 3D search
neighborhood for the grouping by block-matching. However,
capturing blocks of a moving object across many frames re-
quires large spatial dimensions of such search neighborhood.
On the one hand, using large sizes imposes a rather high
complexity burden, and on the other hand, using small ones
results in unsatisfactory grouping and poor denoising results.

In order to e¢ ciently capture blocks that are part of ob-
jects which move across subsequent frames, we propose to use
predictive-search block-matching, an inductive procedure
that �nds similar (matching) blocks by searching in a data-
adaptive spatio-temporal subdomain of the video sequence.
For a given reference block located at x = (x1; x2; t0), when
using a temporal window of 2NFR+1 frames, the predictive-
search block-matching comprises the following steps.
� Starting with frame t0, an exhaustive-search block-
matching is performed in a nonadaptive NS �NS neigh-
borhood centered about (x1; x2). The result are the spa-
tial locations of the NB blocks (within this neighbor-
hood) which exhibit highest similarity to the reference
one. These locations are collected in the set St0 � Z3.

� The predictive search in frame t0 + k, 0 < jkj � NFR,
is de�ned inductively based on the matching results from
the previously processed frame t0+k�sign (k), i.e. from
the preceding frame for k > 0 or from the subsequent
frame for k < 0. This search for similar blocks takes place
within the union of NPR �NPR neighborhoods centered
at the spatial coordinates of the previously found loca-
tions x 2 St0+k�sign(k). That is, these locations predict

V-BM3D video denoising algorithm

Step 1. Obtain a basic estimate using grouping and collab-
orative hard-thresholding.

1.1. For each coordinate x 2 XR do:
(a) Sx =PS-BM (Zx),
(b) ŶSx = T�13D (HARD-THR (T3D (ZSx) ; �3D�)), where

ŶSx is a group of blockwise estimates Ŷ
x
x0 , 8x0 2 Sx.

1.2. Produce the basic estimate ŷbasic by aggregation of
the blockwise estimates Ŷ x

x0 , 8x 2 XR and 8x0 2 Sx using
weighted averaging with weight

�
Ŷ x
x0

�
= 1

�2Nhar(x)
W2D.

Step 2. Obtain the �nal estimate by grouping within the ba-
sic estimate and collaborative Wiener �ltering that uses
the spectra of the corresponding groups from the basic
estimate.

2.1. For each coordinate x 2 XR do:

(a) Sx =PS-BM
�
Ŷ basic
x

�
,

(b) ŶSx = T
�1
3D

 
T3D (ZSx)

[T3D(ŶbasicSx )]2h
T3D

�
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Sx

�i2
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!
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2.2. Produce the �nal estimate ŷfinal by aggregation of Ŷ x
x0

8x 2 XR and 8x0 2 Sx using weighted averaging with

weight
�
Ŷ x
x0

�
= ��2

 [T3D(ŶbasicSx )]2h
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�
Ŷbasic
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�i2
+�2


�2
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W2D, where

k�k2 denotes `
2-norm.

Notation:
� XR � X is a set that contains the coordinates of the
processed reference blocks. We build it by taking each
Nstep element of X along both spatial dimensions, hence
jXRj � jXj

N2
step

.

� Zx denotes a block of size N1 � N1 in z, whose upper-
left corner is at x. Similar notation is used for Ŷ x

x0 and
Ŷ basic
x ; the former is an estimate for the block located
at x0, obtained while processing reference block Zx and
the latter is a block located at x extracted from the basic
estimate ybasic.

� Sx = PS-BM (Zx) performs predictive-search block-
matching (Section 4) using Zx as a reference block, the
result of which is the set Sx containing the coordinates of
the matched blocks. For Step 2, the search is performed
in the basic estimate instead of in the noisy video.

� ZSx denotes a group (i.e. a 3D array) formed by stacking
together the blocks Zx2Sx ; the same notation is used for
ŶxSx and Ŷ

basic
Sx . The size of these groups is N1�N1�jSxj.

� T3D (ZSx) is the spectrum of ZSx using a 3D linear trans-
form T3D which should have a DC basis element (e.g. the
3D-DCT, the 3D-DFT, etc.).

� HARD-THR(T3D (ZSx) ; �3D�) applies hard-threshold-
ing on the transform coe¢ cients (except for the DC) us-
ing threshold �3D� where �3D is a �xed threshold para-
meter.

� Nhar (x) is the number of nonzero coe¢ cient retained af-
ter hard-thresholding T3D (ZSx); since the DC is always
preserved, Nhar (x) > 0, ensuring division by zero never
occurs in Step 1.1.a.

� W2D is a 2D Kaiser window of size N1 �N1.



Figure 1: Flowchart of the proposed BM3D video denoising method. The operation enclosed by dashed lines are repeated
for each reference block. Grouping is illustrated by showing a reference block marked with �R�and the matched ones in a
temporal window of 5 frames (NFR = 2).

where similar blocks are likely to be present in the cur-
rent frame (i.e. frame t0 + k) and thus one can a¤ord to
have NPR < NS . The result for the current frame are the
NB locations of the blocks that exhibit highest similarity
to the reference one; they are collected in the set St0+k.

After performing the predictive-search block-matching
for all of the frames t0 + k for k = �NFR; : : : ; NFR, we
form a single set Sx � Z3 that contains at most N2 of all
x0 2

SNFR
k=�NFR S

t0+k that have the smallest correspond-
ing block-distances to the reference block, which distances
should also be smaller than a prede�ned threshold, �match.
A group is later formed by stacking together blocks located
at x0 2 Sx. The exact ordering of the blocks within the 3D
groups is not important, as shown in [8]. In the worst case,
no matching blocks are found and then the group will con-
tain only one block � the reference one � since its distance
to itself is zero and therefore x will always be included in Sx.

Except for the frame t0 in the procedure presented above,
the spatial search neighborhoods are data-adaptive as they
depend on previously matched locations. This adaptivity
can be interpreted as following the motion of objects across
frames. It is worth noting that similar approach has already
been used for motion estimation [10] and also for fractal
based image coding [11].

5. RESULTS

We present experimental results obtained with the proposed
V-BM3D algorithm. A Matlab implementation of the V-
BM3D that can reproduce these results is publicly available
at http://www.cs.tut.fi/~foi/GCF-BM3D. There, one can
�nd original and processed test sequences, details of which
can be seen in Table 1.

The same algorithm parameters were used in all exper-
iments. Here we give the most essential ones, as the rest
can be seen in the provided Matlab script. The temporal
window used 9 frames, i.e. NFR = 4. The predictive-search
block-matching used NS = 7, NPR = 5, and NB = 2; the
maximum number of matched blocks was N2 = 8, and the
threshold �3D = 2:7. Some of the parameters di¤ered for
the two steps; i.e., for Step 1, N1 = 8, Nstep = 6, and for
Step 2, N1 = 7, Nstep = 4. The transforms were the same
as in [8]: for Step 1, T3D is a separable composition of a
1D biorthogonal wavelet full-dyadic decomposition in both
spatial dimensions and a 1D Haar wavelet full-dyadic de-
composition in the third (temporal) dimension; for Step 2,
T3D uses the 2D DCT in spatial domain and the same Haar
decomposition in the temporal one. To increase the num-
ber of non-overlapping blocks in the groups and hence have
more uncorrelated noise in them, we slightly modi�ed the

used distance measure. The modi�cation was a subtraction
of a small value ds (ds = 3 for Step 1 and ds = 7 for Step 2)
from the distance computed for blocks that are at the spatial
coordinate of the reference one but in di¤erent frames.

In Table 1 we present the PSNR (dB) results of the
proposed algorithm for a few sequences; there, the PSNR
was measured globally on each whole sequence. In Fig-
ure 2, we compare our method with the 3DWTF [5] and
the WRSTF [3], which are among the state-of-the-art in
video denoising. For this comparison, we applied our
method on noisy sequences and compared with the ones
denoised by the other two methods. These sequences
had been made publicly available by Dr. V. Zlokolica at
http://telin.ugent.be/~vzlokoli/PHD, for which we are
thankful. We note that the pixel intensities of the input
noisy videos are quantized to integers in the range [0; 255],
unlike in the case of the results in Table 1. In Figure 2
one can observe that the proposed V-BM3D produces signif-
icantly higher PSNR than the other two methods for each
frame of the three considered sequences, with a di¤erence
well higher than 1 dB for most of the frames. Moreover, this
was achieved at similar execution times as compared with
the WRSTF; i.e., the proposed V-BM3D (implemented as
a Matlab MEX-function) �lters a CIF (288�352) frame for
0.7 seconds on a 1.8 GHz Intel Core Solo machine and the
WRSTF was reported [3] to do the same for 0.86 seconds
on an Athlon64 (4000+) 2.4 GHz machine. Figure 3 gives a
visual comparison for a fragment of the 77th frame of Ten-
nis denoised with each of the considered techniques. The
proposed method shows superior preservation of �ne image
details and at the same time it introduces signi�cantly less
artifacts.

6. DISCUSSION

Let us compare the proposed predictive-search block-
matching with the motion estimation methods based
on block-matching. Indeed, the predictive-search block-
matching proposed in this work can be viewed as a sophisti-
cated motion estimation which is not restricted to only one
matched block per frame. That is, NB blocks per frame can
be used in the proposed grouping scheme. This can be ben-
e�cial in situations when there are only very few (or none)
similar blocks along the temporal dimension, e.g. in the case
of frame change. In that case, mutually similar blocks at dif-
ferent spatial locations within the same frame are exploited
when forming groups and hence better sparsity is achieved
by applying a 3D transform. This can be particularly ef-
fective when grouping blocks that are parts of, e.g., edges,
textures, and uniform regions.

The second step of the proposed method is very impor-
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Video name: Salesm. Tennis Fl.Gard. Miss Am. Coastg. Foreman Bus Bicycle
Frame size: 288�352 240�352 240�352 288�360 144�176 288�352 288�352 576�720

�=PSNR Frames: 50 150 150 150 300 300 150 30
5 = 34:15 40.44 38.47 36.49 41.58 38.25 39.77 37.55 40.89
10 = 28:13 37.21 34.68 32.11 39.61 34.78 36.46 33.32 37.62
15 = 24:61 35.44 32.63 29.81 38.64 33.00 34.64 31.05 35.67
20 = 22:11 34.04 31.20 28.24 37.85 31.71 33.30 29.57 34.18
25 = 20:17 32.79 30.11 27.00 37.10 30.62 32.19 28.48 32.90
30 = 18:59 31.68 29.22 25.89 36.41 29.68 31.27 27.59 31.77
35 = 17:25 30.72 28.56 25.16 35.87 28.92 30.56 26.91 30.85

Table 1: Output PSNR (dB) of the proposed V-BM3D algorithm for a few image sequences; the noise is i.i.d. Gaussian with
variance �2 and zero mean. The PSNR was computed globally on each whole sequence.

� PSNR after Step 1 PSNR after Step 2
10 35.44 36.46
15 33.59 34.64
20 32.12 33.30
25 30.86 32.19

Table 2: PSNR improvement after applying Step 2 of our
algorithm on the Foreman test sequence.

tant for the e¤ectiveness of the overall approach. This is
due to the improved grouping and the improved shrinkage
by empirical Wiener �ltering both of which are made possi-
ble by utilizing the basic (intermediate) estimate. In Table 2
one can compare the PSNR corresponding to both the basic
estimate and the �nal one; the improvement is substantial,
exceeding 1 dB in all cases shown there.

Since our approach uses the same assumptions that are
used for the non-local estimation denoising, it is worth
comparing the two approaches. The non-local means uses
weighted averaging to obtain the �nal pixel estimate, where
the weights depend on the similarity between the 2D patches
(e.g. blocks) centered at the averaged pixels and the patch
centered at the estimated pixel. In order to achieve good
performance, this approach needs to capture plenty of very
similar (in the ideal case, identical) patches. In the proposed
method, we use a rather di¤erent approach where instead of
a simple weighted average we use a complete decorrelating
linear transform. The higher-order terms of the transform
can approximate also variations between the spectral compo-
nents of the grouped blocks, enabling a good �ltering also for
relatively dissimilar blocks. The subsequent shrinkage allows
to take advantage of the sparsity by preserving the high-
magnitude coe¢ cients and truncating the ones with small
magnitudes that are mostly due to noise.

The weights in the adopted aggregation (Steps 1.2 and
2.2 of the algorithm) favour blockwise estimates coming from
sparsely represented groups. Such groups have few nonzero
coe¢ cients after hard-thresholding (Step 1.1.b) and few
Wiener attenuation coe¢ cients close to unity (Step 2.1.b).

Computational scalability of the V-BM3D can be
achieved as in the image denoising counterpart of the algo-
rithm [8] by varying certain parameters. The most important
parameters that allow for such trade-o¤ between denoising
quality and complexity are the sliding step Nstep and the
block-matching parameters NS , NPR, and NB .

7. CONCLUSIONS

In this work, we proposed a video denoising method that is
both computationally e¢ cient and achieves state-of-the-art
results in terms of both PSNR and visual quality. These
results are consistent with the ones already obtained by the
image denoising counterpart [8] of the approach. We are

currently working on extensions of the proposed method. A
detailed analysis of its complexity and implementation issues
as well as its application to color-video denoising will be
reported in a forthcoming full-length publication.
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