Direction of Arrival Based Spatial Covariance Model for Blind Sound Source Separation


Deprecated: implode(): Passing glue string after array is deprecated. Swap the parameters in /var/www/html/arg/administrator/components/com_jresearch/helpers/publications.php on line 269

Deprecated: implode(): Passing glue string after array is deprecated. Swap the parameters in /var/www/html/arg/administrator/components/com_jresearch/helpers/publications.php on line 269

Deprecated: implode(): Passing glue string after array is deprecated. Swap the parameters in /var/www/html/arg/administrator/components/com_jresearch/helpers/publications.php on line 269

Deprecated: implode(): Passing glue string after array is deprecated. Swap the parameters in /var/www/html/arg/administrator/components/com_jresearch/helpers/publications.php on line 269

Deprecated: implode(): Passing glue string after array is deprecated. Swap the parameters in /var/www/html/arg/administrator/components/com_jresearch/helpers/publications.php on line 269

Deprecated: implode(): Passing glue string after array is deprecated. Swap the parameters in /var/www/html/arg/administrator/components/com_jresearch/helpers/publications.php on line 269
Nikunen, Joonas; Virtanen, Tuomas

Abstract

This paper addresses the problem of sound source separation from a multichannel microphone array capture via estimation of source spatial covariance matrix (SCM) of a short-time Fourier transformed mixture signal. In many conventional audio separation algorithms the source mixing parameter estimation is done separately for each frequency thus making them prone to errors and leading to suboptimal source estimates. In this paper we propose a SCM model which consists of a weighted sum of direction of arrival (DoA) kernels and estimate only the weights dependent on the source directions. In the proposed algorithm, the spatial properties of the sources become jointly optimized over all frequencies, leading to more coherent source estimates and mitigating the effect of spatial aliasing at high frequencies. The proposed SCM model is combined with a linear model for magnitudes and the parameter estimation is formulated in a complex-valued non-negative matrix factorization (CNMF) framework. Simulations consist of recordings done with a hand-held device sized array having multiple microphones embedded inside the device casing. Separation quality of the proposed algorithm is shown to exceed the performance of existing state of the art separation methods with two sources when evaluated by objective separation quality metrics.

Keywords

Complex-valued NMF

Year:
2014
Journal:
IEEE/ACM Transactions on Audio, Speech & Language Processing
Volume:
22
Number:
3
Pages:
727-739
Month:
March