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Abstract

Prediction of overall visual quality based on instrumental measurements is a

challenging task. Despite the several proposed models and methods, there ex-

ists a gap between the instrumental measurements of print and human visual

assessment of natural images. In this work, a computational model for repre-

senting and quantifying the overall visual quality of prints is proposed. The

computed overall quality should correspond to the human visual quality per-

ception when viewing the printed images. The proposed model is a Bayesian

network which connects the objective instrumental measurements to the sub-

jective opinion distribution of human observers. This relationship can be used

to score printed images, and additionally, to computationally study the connec-

tions of the attributes. A novel graphical learning approach using an iterative

evolve-estimate-simulate loop learning the quality model based on psychomet-

ric data and instrumental measurements is suggested. The network structure

is optimised by applying evolutionary computation (evolve). The estimation of

the Bayesian network parameters is within the evolutionary loop. In this loop,
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the maximum likelihood approach is used (estimate). The stochastic learning

process is guided by priors devised from the psychometric subjective experi-

ments (performance through simulation). The model reveals and represents the

explanatory factors between its elements providing insight to the psychophysi-

cal phenomenon of how observers perceive visual quality and which measurable

entities affect the quality perception. By using true data, the design choices are

demonstrated. It is also shown that the best-performing network establishes a

clear and intuitively correct structure between the objective measurements and

psychometric data.

Keywords: Print quality assessment, overall visual quality, Bayesian

networks, structural optimisation

1. Introduction

The concept of visual quality describes the quality of a reproduction of visual

information on some media, for example, a printed photograph. Ambiguity can-

not be avoided when defining a visual quality measure because the ground truth

is the subjective opinion of an “end-user” observing the reproduction. Numer-

ous measures still do exist and new ones appear continuously, but their relation

to the fundamental objective, prediction of the visual quality as perceived by

humans, is often heuristically justified or covers only a narrow problem domain

due to limited experimental data. Despite this, quality measurements are im-

portant for developing new products (paper grades, inks, printers, etc.) within

the relevant industries, and therefore, are in active use in research laboratories.

Popular measures are, for example, objective metrics focusing on artefacts in

printed test patterns, such as print dot roundness and edge raggedness˜(Wolin

et˜al., 1998b,a), micro-uniformity, macro-uniformity, colour rendition, text and

line quality, gloss, sharpness, and spatial adjacency˜(Bouk et˜al., 2008), and

unevenness of solid printed regions (e.g.,˜Armel and Wise (1998); Briggs et˜al.

(1999); ISO/IEC (2001)). In their recent work, the authors showed how the

full-reference measures developed for digital images can be transformed for use
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with prints˜(Eerola et˜al., 2010). It is also generally accepted, as demonstrated

in˜(Eerola et˜al., 2007, 2008a,b), that the listed measures indeed contribute to

the overall quality, but the nature of this combined perceptual, cognitive, and

psychological process is not merely a weighted sum of the measures. The persis-

tent problem remains: how the measurable properties and the recorded human

observations should be connected, and is it feasible to explain the phenomenon

of visual quality?

In realistic and challenging visual evaluation tasks involving aesthetic or

even personal attributes, it is highly unlikely that the overall visual print qual-

ity can be measured with a single measurement and represented by a single

scalar value˜(Keelan, 2002). Even in restricted settings with artefactual or

preferential attributes, human evaluators are likely to give different ratings for

the same samples. With simple visual assessment tasks, the physiological cause

for the variation near the just-noticeable difference (JND) of a visual attribute

arises from differences between the observers and from the stochastic nature of

perception. Despite the fact that photoreceptor cells in the human retina can

detect even single photons˜(Baylor et˜al., 1979), the absorption of a photon by a

photoreceptor pigment is a random process, detection thresholds are dependent

on the adaptation of the visual system, and the photoreceptor functionality is

affected by inherent noise˜(Birge and Barlow, 1995). When the visual attributes

composing a stimulus are well above the JND levels, only the consistency of an

individual observer in her judgement (personal variation in the evaluation crite-

ria) and the level of agreement in a jury of observers affect the variation of the

combined result. In the case of a jury, also cultural factors and physiological dif-

ferences can have an effect on the evaluation. When the visual assessment task

is made more realistic by evaluating natural images of high quality, however,

the subjective assessments are affected by the JNDs of related visual attributes,

by the inconsistency of an individual observer, and by the level of agreement

within a jury of observers. To keep the variation at a reasonable level, it is

essential to carefully design both the visual stimuli and evaluation task for the

subjective experiment. Also, a psychometric method is required that allows the
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subjects to express their visual experience in viewing a specific image. This can

be accomplished in a suitable experimental set-up.

The stochastic nature of perception and interpretation of visual information

motivates to treat the overall quality and its attributes as probability distri-

butions. For this purpose, the Bayesian theory provides a natural tool for

modelling and analysis. A Bayesian network is an attractive tool since it is a

probabilistic model that represents a set of random variables (instrumental mea-

surements and subjective attributes) and their conditional independences with

a directed graph. The idea of using Bayesian networks for modelling visual qual-

ity is not completely new. In˜(de˜Freitas˜Zampolo and Seara, 2004) and˜(Pulla

et˜al., 2008), Bayesian networks were used to describe the overall image quality.

However, these studies were not complete. In˜(de˜Freitas˜Zampolo and Seara,

2004), a network was used to combine noise˜(Damera-Venkata et˜al., 2000) and

distortion measures˜(de˜Freitas˜Zampolo and Seara, 2003). The work reported

in˜(Pulla et˜al., 2008) was more similar to this work since the authors used the

network to combine objective and subjective assessment data. The objective

measurements were given as input values, and the overall image quality was

viewed as a probability distribution of ratings. The previous works did not

consider the problem of how to establish the network structure automatically

based on true data. Instead, they showed the potential of Bayesian networks to

model image quality and similar phenomena.

In this work, the idea in˜(Pulla et˜al., 2008) is further developed by propos-

ing a method which automatically optimises the structure of the Bayesian net-

work for using it as a model of visual print quality. This is done by making

elementary hypotheses about the behaviour of the overall quality with respect

to the objective measures (prior) and by computing the model fitness through

simulation. The structure optimisation method is a genetic algorithm mainly

due to the complexity of the optimisation problem and to the need for sim-

ulation to evaluate the fitness of a solution. The main contribution of this

paper is an evolve-estimate-simulate optimisation loop, where the structure and

connections are evolved using an evolutionary approach, network parameters es-
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timated using the maximum likelihood rule, and network performance evaluated

using simulation. The final network forms statistical dependencies between the

collected psychometric data and instrumental measurements whos values were

discretised to the range [1, 5]. The network can be used as a unified model

representing and explaining the phenomenon, and also as a more practical tool

producing just a single visual quality index (VQI) for any printed product.

The report is organised as follows: in Sec.˜2, the use of Bayesian network for

the problem of estimating print quality is described. Structural optimisation of

the network is presented in Sec.˜3. The experimental arrangements and results

are given in Section˜4, and conclusions in Sec.˜5.

2. Visual print quality model

Bayesian networks˜(Pearl, 1988) can be used as a tool for decision making

under uncertainty. A network is a graph with nodes and edges with parameters.

The parameters represent conditional probabilities of node outputs given node

inputs. Typical applications for Bayesian networks are, for example, medical

diagnosis˜(Nikovski, 2000), troubleshooting˜(Breese and Heckerman, 1996), stu-

dent modelling˜(Yang et˜al., 2007), complex genetic models˜(Friedman et˜al.,

2000), and crime analysis˜(Oatley and Ewart, 2003). Related to the topic of

this work, Bayesian networks have also been applied for controlling a complex

printing system˜(Hommersom and Lucas, 2010). In the following, Bayesian

networks as a model of visual print quality is formalised.

2.1. Main structure and variables

The first step to construct a Bayesian network is to select the nodes, that

is, the random variables. In this work, the basic structure depicted in Fig.˜1 is

used for the Bayesian network. On the left, the nodes represent the objective

measures that are the essential external model inputs. In the figure, the right-

most node represents the overall quality, the network output in the form of a

probability distribution within the range of possible values. The middle portion
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Figure 1: The basic Bayesian network structure with example distributions of random vari-

ables representing the inputs and output of the model.

consists of the subjective attributes which represent the abstract quality con-

cepts shared and used by the individuals to form the basis of overall quality.

These attributes were identified in the human experiments using well-defined

psychometric tests described in Sec.˜2.2. The subjective attributes form an

intermediate layer which transforms the objective measures into probabilistic

overall quality. The arrows indicate the causality of the model. In the network,

the subjective attributes are interpreted as “the reality” that is desired to be

measured. On the one hand, the subjective attributes induce a certain mea-

suring result (the objective measurements), and additionally, their combination

forms the perceived overall quality. This is why the direction of the causality

is from the subjective attributes to the objective measures as well as to the

overall quality. However, constraining the direction of the causality towards the

objective measures does not prevent the inference of subjective attributes and

the overall quality based on the objective measures. It is important to notice

that the objective measures on the left in Fig.˜1 can be accurately and repeat-

edly measured from printed photographs and test fields. The overall quality, or
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more precisely, its distributions from experiments with a jury of observers, can

be estimated by carrying out psychometric experiments. From this viewpoint,

the model produces the most likely distribution of the overall quality opinions

of the observers, if the same material is physically presented to a number of

them.

The best objective measures for the left portion in Fig.˜1 were selected ac-

cording to the results of the prior works by the authors˜(Eerola et˜al., 2008a,b)

where the most important instrumental and computational measures were sur-

veyed and their relevance for explaining the overall quality was evaluated. The

task was not possible by using the standard linear correlation; instead, non-

linear relationships were evaluated and ranked using the proposed cumulative

match score histogram (CMSH)˜(Eerola et˜al., 2008a). The main idea behind

the CMSH is the assumption that if two samples are visually perceived as being

close to each other, they should be close to each other also based on the ob-

jective measurements. If a measure fails to meet the criterion, it was classified

as irrelevant for subjective overall quality. Using the method, it was possible

to rank the existing measures, and even exhaustively search for the optimal

combinations of N = 1, 2, . . . , 6 best measures. For digital printing (inkjet and

electrophotography), the following six measures were selected: computational

mottling˜(Sadovnikov et˜al., 2007), colour gamut, mean colour density, print

gloss, edge blurriness and edge raggedness. This result is well in accordance

with the current practises: these measures are commonly used in paper mill

laboratories as well. Detailed descriptions of them can be found in˜(Eerola

et˜al., 2008a).

The selection of subjective attributes was based on systematic interviews of

observers during the far-reaching subjective experiments. As a standard psy-

chological interview technique˜(Radun et˜al., 2008) the observers were asked to

describe visual factors that affected their ratings after they had given a rating

for overall quality for each image. Later, a common vocabulary was established

from the factors by using manual search, frequency analysis, and term map-

pings, and it was revised in the next independent experiments. Specifically, the
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most common subjective attributes were as follows: naturalness, clarity, colour-

fulness, subjective gloss, graininess, lightness, contrast, and sharpness. It should

be noted that these subjective attributes do not necessarily correspond to their

physical analogues since the semantic meaning of a term varied between the

observers. This is typical for the natural, fuzzy concepts that näıve observers

use in their everyday speech in contrast to the well-defined concepts used by

the professionals. This difference is not necessarily caused by the incorrect use

of the terms, but by the fact that visual impressions of contrast, sharpness,

naturalness etc. are not unambiguously related to any physical property of

an image. For example, higher colour saturation may make the image look

subjectively sharper, although the use of these concepts is separated among

professionals. For this reason, the graph edges cannot be formed manually, but

the relationships need to be learned.

2.2. Training and using subjective data

For training the network, the maximum likelihood estimation for complete

data can be used since the numerical values of each node and for every sample

exist. The instrumental and computational methods to perform the objective

measures are described in˜(Eerola et˜al., 2008a). To obtain the numerical values

of the subjective attributes and overall quality, several far-reaching psychometric

experiments with interviews were conducted. These procedures with data have

been described in detail in˜(Oittinen et˜al., 2008). In brief, samples from a

specific set of natural images were placed on a table in a random order. Labels

with the numbers from 1 to 5 were also presented on the table. The observer

was asked to select the sample representing the lowest quality in the sample

set and place it on the label with number 1. Then, the observer was asked

to select the highest quality sample and place it on the label with number 5.

After that, the observer’s task was to place the remaining samples on the labels

so that the quality increased steadily from 1 to 5. The subjective attributes

were evaluated similarly, only now the observer was asked to label the samples

based on a single attribute, such as sharpness or graininess. Information about
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the number of observers and paper samples are given in Section˜4.1. For the

experiments in this study, the revised set of subjective attributes was selected

using the previous psychometric experiments.

In this work, multi-dimensional arrays were used as the conditional proba-

bility distributions. Such arrays are suitable only if the data are discrete. The

subjective data were readily discrete (1-5), but the objective variables needed

to be discretised. The discretisation was carried out at the interval [1,5] with

equal-width bins so that the largest value was given 5 and the lowest 1. When all

the training data were collected and linearly discretised, the Bayesian network

with a selected structure can be straightforwardly trained using the maximum

likelihood parameter estimation˜(Holmes and Jain, 2008). Due to the potential

problems with the low amount of training data, the Laplace correction was used.

2.3. Inference with Bayesian network

Inference with a Bayesian network can be understood as the computation of

marginal distribution of one node (model output) based on evidence (model in-

puts) or finding of the most probable explanations, i.e., values for several nodes.

The junction tree algorithm was used for the inference˜(Huang and Darwiche,

1996). The basic idea of the junction tree algorithm is to form a tree-structured

Bayesian network equivalent to the initial multi-connected network. In the

junction-tree, the nodes are cliques of the original nodes. For a tree structured

Bayesian network, inference (computation of the conditional probabilities) can

be performed in linear time. However, it should be noted that for large cliques

the computation is exponential.

Let G = (V,E) be a directed acyclic graph. Each node i ∈ V corresponds

to a random variable Xi with finite-set states, and pai is the set of parents of

node i. Using the chain rule, a joint probability distribution represented by a

Bayesian network is got

p(x) =

K
∏

k=1

p(xk|pak) . (1)
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A constructed network is an efficient tool for probabilistic inference. How-

ever, building such a network, especially finding its structure, remains the main

problem. In the next section, the optimisation of a network structure in the

case of print quality evaluation is discussed, and a method to find a working

and general model even with a limited amount of training data is proposed.

3. Learning the structure

Learning the optimal structure for a Bayesian network has been shown

to be NP-complete˜(Chickering, 1996). As a consequence, full search meth-

ods are infeasible. Several heuristic methods for structure learning exist (e.g.,

see˜(Neapolitan, 2004)). However, the laborious nature of collecting subjec-

tive data in the presented case severely limits the available amount of training

data. Therefore, most heuristic methods, such as the PC algorithm˜(Spirtes

and Glymour, 1991), are not applicable. The structure optimisation is, how-

ever, essential for solving the problem and needs to be implemented into the

learning process.

In the case of print quality modelling, it is possible to form a number of

hypotheses on how the model should behave. For example, if the undesired

solid printed area unevenness (Mottling) increases while the other objective

measures remain the same, the overall quality should decline. Similarly, if the

colour gamut (a subset of colours a paper grade can reproduce with the available

inks) expands, then the overall quality should improve. Using these heuristic

and intuitively correct regulation rules, it is possible to produce a scalar value

representing how logically correct a model is, that is, by randomly pruning how

well model behaviour follows the hypotheses. This leads to a complex optimisa-

tion task: finding such a Bayesian network structure that the model behaves as

logically as possible after its parameters have been estimated using the training

data. In this learning scheme, a network is not evaluated according to how well

it represents the training data, but how well it represents the prior knowledge

after the estimation with the training data. Therefore, the prior knowledge of

10



behaviour acts as a regularisation term which enables the optimisation process

with a small number of data points.

3.1. Optimisation problem

The hypotheses related to the behaviour of the network are listed in Table˜1.

These hypotheses are simply evaluated by computing the marginal distribution

of overall quality with selected objective measure values set as evidence, and

then, changing the value of a single objective measure and examining the sign

change of the marginal distribution. To avoid the comparison of distributions,

their expected values are used. The expected value of overall quality can be

seen as an estimate for the mean opinion score (MOS).

Table 1: Prior rules as hypotheses for optimising the structure.

Id Change on input Effect on overall quality

H1 Mottling increases decrease

H2 Colour densities increase increase

H3 Colour gamut increases increase

H4 Gloss increases increase

H5 Edge blurriness increases decrease

H6 Edge raggedness increases decrease

The computation of marginal distributions is time consuming, and therefore,

testing all prior hypotheses with all possible input combinations is infeasible.

Instead, a number of random comparisons which provides statistical significance

is selected. Let n be the sample size, that is, the number of tests per hypothesis,

and Xi the test result (1 if a hypothesis is supported and 0 if not). Now,

p∗n =

n
∑

i=1

Xi/n (2)

is the proportion of tests supporting the hypothesis: the higher the value, the

better the evaluated model follows the hypothesis. Let p = E[Xi] be the true
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value of p∗n when all possible input combinations are tested. Let us select the

sample size n from

P (|p∗n − p| ≤ ǫ) ≥ Pǫ, (3)

that is, p∗n should not differ from p more than ǫ with the probability Pǫ. Ac-

cording to the central limit theorem,

p∗n ∼ N(p,
p(1− p)

n
), (4)

and now,

P



|Z| ≤
ǫ

√

p(1−p)
n



 ≥ Pǫ, (5)

where Z ∼ N(0, 1). It is apparent that the sample size depends on p, and

p(1 − p) reaches its maximum value (1/4) when p = 1/2. Using (5), it is

now straightforward to calculate the optimal sample sizes for different ǫ and Pǫ

(Table˜2).

Table 2: The minimum sample sizes (the number of hypothesis tests) for different ǫ and Pǫ

(the resulting error is smaller than ǫ with the probability Pǫ).

Pǫ ǫ = 0.01 ǫ = 0.05 ǫ = 0.10

0.9 6764 271 68

0.95 9604 384 96

Next, the fitness function is formed based on the prior hypothesis evalua-

tions. Let Xi,j be the result of the jth hypothesis in the ith test. Now, the

fitness function to be maximised can be formed as

f =
1

6

6
∑

j=1

(

n
∑

i=1

Xi,j/n

)

(6)

It should be noted that if the number of edges in the graph increases con-

siderably, the situation may occur that the number of parents of some node is

too large and the parameter estimation fails. This is due to the limited amount

of training data, since the complexity of the joint distribution of a node grows

12



exponentially in proportion to the number of its parents˜(Bishop, 2006). This

further causes hypothesis tests to fail and the fitness function value to decline.

This, on the other hand, favours sparse networks where only the most impor-

tant edges remain. Therefore, the presented fitness function also prevents over

fitting to the existing data.

3.2. Genetic algorithms

The genetic/evolutionary approach was adopted mainly due to the complex-

ity of the optimisation problem and the need of simulation to evaluate the fit-

ness. Typical to all NP-complete problems, evolutionary approaches have been

applied also to the structural optimisation of Bayesian networks˜(Larrañaga

et˜al., 1996; van Dijk et˜al., 2003) Also other stochastic metaheuristics such

as ant colony optimisation˜(de˜Campos et˜al., 2002), univariate marginal dis-

tribution algorithm˜(Blanco et˜al., 2003), and population-based incremental

learning˜(Blanco et˜al., 2003) have been proposed. The earlier studies, how-

ever, typically optimise the structure directly for the given training data. This

work differs from them in the sense that the training data is used only for pa-

rameter estimation, and the evolutionary strategy is applied only to guide the

search towards solutions which are supported by the hypotheses. Moreover,

with the limited data in our case, structural optimisation using only the data

would be impossible.

A tailored genetic algorithm for the structure optimisation is presented in

Algorithm˜1. The Bayesian network structure is represented by adjacency ma-

trices and converted to the population members by concatenating the matrix

entries to vectors

a11a21...an1a12a22...ann, where aij =











1 if j is a parent of i

0 otherwise

(7)

In the basic structure (see Fig.˜1), certain edges are not allowed (e.g., from

overall quality to objective measures). The corresponding cells in the population

member vector can be excluded from the search by fixing them to zero and this

way speed up the optimisation process.
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Algorithm 1. Genetic algorithm

1: Choose an initial population of size N

2: Estimate the model parameters for each population member

3: Evaluate the fitness of each initial population member using Eq. 6

4: repeat

5: Randomly select pairs of individuals for crossover

6: Generate a new population by uniform crossover and random mutations

7: Estimate the model parameters for each population member

8: Evaluate the fitness of each member of new population

9: Combine the previous and new population, and select the N best individ-

uals for the next iteration

10: until termination

In Algorithm˜1, crossover means that some edges are swapped between two

individuals with a fixed probability (crossover probability), and mutation that

edges are removed or added randomly with a fixed probability (mutation prob-

ability). It should be noted that the crossover and mutation steps can produce

offsprings which are not allowed, that is, the network structure becomes cyclic.

This is handled by setting the fitness of each illegal population member to 0,

which eliminates them before the next iteration.

4. Experiments

In this section, the data, selected paper types and printed test images are

introduced, and the results are demonstrated discussing also the produced mod-

els.

4.1. Test set

The test set consisted of 21 paper grades (15 papers designed for elec-

trophotography and 6 multi-purpose papers). The samples were printed using

a Xerox DocuColor 6060 production-scale electrophotographic printer. Paper-

specific colour management profiles were determined using a profiling target,
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spectrophotometer and profiling software, which is the current practise in high

quality printing. The optimal print settings were used for each paper. The

printing process corresponds to standard practises and is defined in more detail

in˜(Oittinen et˜al., 2008). Two different collages of test images were printed on

each paper grade (see Fig.˜2). The test images consisted of natural images and

technical test fields. Ten copies of the images were printed, and the best prints

were chosen for further study. In this way, it was made sure that the effect of

media (papers on the final result) was studied, and not the printing process.

Figure 2: The used test images and technical fields.

The printed samples were scanned using a high quality scanner with 2500 dpi

resolution and 48-bit RGB colours. A colour management profile was devised

for the scanner before scanning, and colour correction, descreening and other

automatic settings were disabled in the scanner software. The digitised images

were saved using lossless compression.

The objective measures were computed from the technical test fields, and

the subjective evaluation was carried out using three natural image contents
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(human portrait, landscape and cactus in Fig.˜2). The subjective evaluation

was conducted separately for each image content, and the number of observers

was 29, so the number of training samples was 21 × 3 × 29 = 1827. However,

it should be noted that the objective measures were constant for each paper

grade, and thus, the training data is extensive only for the subjective part of

the model (only 21 different combinations of objective measures).

4.2. Optimising the structure

Table˜3 shows the parameters used for the genetic algorithm. The initial

population consisted of 20 educated guesses, 20 fully random networks, and 20

partly educated guesses (some of the edges manually selected). Due to the long

computation time of marginal distributions, the number of hypothesis tests

in the fitness function evaluation was set to small (100 per hypothesis), and

thus, the error margin for the fitness function value was relatively large (see

Table˜2). Therefore, a list of the 100 best structures was maintained during

the optimisation process, and evaluated with a larger number of hypothesis

tests after the optimisation process. Due to the stochastic nature of genetic

algorithm, the structure learning was repeated 10 times and the best structures

were selected over all runs. The progress of the genetic algorithm is shown in

Fig.˜3

Table 3: Parameter values for the genetic algorithm.

Parameter Value

Size of population 60

Number of iterations 1000

Crossover probability 0.5

Mutation probability 0.02

The best structures of the Bayesian network found in the optimisation pro-

cess are shown in Fig.˜4. As mentioned above, a list of the 100 best structures
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Figure 3: Progress of the genetic algorithm.

was maintained during the optimisation process and the optimisation was re-

peated 10 times resulting 1000 network structures. After the optimisation step,

the fitness function was computed for the 1000 networks with a larger sample

size (2000 per hypothesis). The best structure according to the fitness function

is shown in Fig.˜4(a). All the 1000 networks were evaluated against the sub-

jective MOS using leave-one-out cross-validation. The best structure according

to the correlation coefficient between the model output and MOS is shown in

Fig.˜4(b). In Fig.˜5, the correlations against the subjective evaluation are plot-

ted. The expectation values of the overall quality were used as the visual quality

index (VQI). For a comparison, a tree-structured network learned using Chow-

Liu algorithm˜(Pearl, 1988) was also tested. With a correlation coefficient of

0.75 against MOS, the tree-structured network was outperformed by the net-

works found using proposed structure optimisation method. In Fig.˜4(c) and

Fig.˜5(c), results are shown when, instead of optimising the fitness function

presented in Sec.˜3.1, the correlation coefficient to subjective evaluation was

optimised. It is clear that the number of edges increases dramatically, and due

to the small amount of training data, the generalisability of the model becomes

weak.
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(a)

(b)

(c)

Figure 4: The best Bayesian network structures found: (a) Best simulation result; (b) Best

correlation against the subjective evaluation (leave one out); (c) Correlation coefficient opti-

mised instead of the fitness function.

18



1 2 3 4
1.5

2

2.5

3

3.5

4

V
Q

I

MOS

(a)

1 2 3 4
2

2.5

3

3.5

4

V
Q

I

MOS

(b)

1 2 3 4
1

2

3

4

5

V
Q

I

MOS

(c)

Figure 5: Correlations between the model-produced visual quality index (distribution expec-

tation) and subjective MOS. Correlations computed using the leave-one-out cross-validation:

(a) Best fitness function value in Fig.˜4(a)(correlation: 0.924); (b) Best correlation against the

subjective evaluation in Fig.˜4(b) (correlation: 0.933); (c) Correlation coefficient is optimised

instead of the fitness function in Fig.˜4(c) (correlation: 0.994).

4.3. Model analysis

The significance of the edges in the produced networks was studied by re-

moving them one at time and by computing the root mean square error (RMSE)

between the output of the original model and the reduced model:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(ai − bi)2, (8)

where ai is the output of the original model (expected value of the marginal

distribution) and bi is the output of the reduced model. A large number (N =

2000) of random inputs were used in the computation. The results are shown

in Fig.˜6. The line width represents the significance of an edge (large RMSE).

Similarly, the significance of the inputs (objective measures) was studied and

converted to scores (RMSE) in Fig.˜6 (larger score denotes higher significance).

The generality of the models was tested using the following procedure: (i)

training the model with real subjective data, (ii) generating new data based on

the model, (iii) re-training the model with the generated data, and (iv) vali-

dating the simulated model with real subjective data. For the generated model

data, the inputs were randomly sampled from uniform distributions. Random

inputs formed the evidence, and the marginal distributions for all other nodes
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(a)

(b)

Figure 6: Sensitivity analysis of the best Bayesian network structures. The line width rep-

resents the significance of an edge, and the numbers represent the significance of the instru-

mental measures: (a) Best fitness function value; (b) Best correlation against the subjective

evaluation (leave-one-out).

(subjective attributes and the overall quality) were computed. New data, that

is, integer values for each node, were determined by sampling the computed

marginal distributions. In this way, the generality of the models was tested in

20



two stages: how well the generated data correspond to the real world data, and

how well the simulated model predicts the real subjective data. The number of

generated samples to train the simulated model was 2000 and the experiment

was repeated 100 times. The results are shown in Fig.˜7. Error bars reperesent

the standard deviations of the simulated model outputs (VQI). The mean cor-

relation coefficients over 100 simulated model were as follows: 0.91 for network

with best fitness function value (Fig.˜4(a)), 0.93 for network with best corre-

lation to subjective evaluation (Fig.˜4(b)) and 0.80 when the correlation was

optimised instead of the fitness function (Fig.˜4(c)). It can be seen that the cor-

relation decreases significantly for the network structure found by optimising the

correlation to subjective evaluation with the small training set (Fig.˜7(c)), but

do not change considerably for the models where the behaviour of the model was

optimised using hypothesis testing (Fig.˜7(a)-(b)). This confirms the previously

mentioned assumption about generalisability becoming weak due to overfitting

if only the correlation coefficient is optimised by using a small amount of sub-

jective data.
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Figure 7: Scatter plots between the model-produced visual quality index (distribution expec-

tation) and subjective MOS when using a simulated model: (a) Best fitness function value

(mean correlation: 0.91); (b) Best correlation against the subjective evaluation (mean cor-

relation: 0.93); (c) Correlation coefficient optimised instead of the fitness function (mean

correlation: 0.80).
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5. Conclusions

In this paper, a Bayesian network model of overall visual print quality was

presented. The learnt model in Fig.˜6(a) is already an important result for

further analysis of human visual quality perception and the value of subjective

attribute data in modelling the perception. The second important contribu-

tion is the machine learning framework to search for the optimal structure of

Bayesian network given an initial basic structure, a small amount of psychomet-

ric subjective data, and prior hypotheses concerning the model behaviour. The

presented framework utilises a simulation-based fitness function and a tailored

genetic algorithm to produce a set (population) of well-performing models. Se-

lection of the best model depends on the application: is the objective to optimise

the performance against the subjective evaluation in well-defined circumstances,

or is there need for a model as general as possible? It should be noted, how-

ever, that if the printing method is changed, the structural optimisation needs

to be re-run. The models presented here are valid only for electrophotography

printing.

An interesting aspect of the presented model and its learning method is that

the discovered connections and their significance help to understand the phe-

nomenon of subjective quality evaluation. The discovered edges between the

nodes (objective measures and subjective attributes) provide information about

the abstract attributes that humans use for evaluating quality. The models also

reveal what the nature of these subjective attributes is from the viewpoint of

objective measures and how they contribute to each other. In addition, a full

model, even with its limitations, is much more versatile than any traditional im-

age quality measure. In the experiments, only the objective measures were used

as evidence to infer the overall quality output, but similarly, the overall quality

can be used as evidence and the distributions of the objective measures can be

studied. This guides us to better understand the effects of different objective

measures on the perceived quality. The result is useful in media technology as

well as for psychophysical research.
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